Spaces:
Running
Running
File size: 6,703 Bytes
a5c122b 27d01c0 fa22df9 27d01c0 889b719 fa22df9 27d01c0 248e18e 27d01c0 ac2c8ca e39c511 fa22df9 248e18e fa22df9 248e18e 8b4b30a 248e18e ac2c8ca e39c511 fa22df9 27d01c0 1fa9a79 27d01c0 fa22df9 27d01c0 248e18e fa22df9 248e18e 27d01c0 fa22df9 27d01c0 fa22df9 f238a34 fa22df9 27d01c0 fa22df9 27d01c0 fa22df9 1fa9a79 fa22df9 1fa9a79 ac2c8ca 8b4b30a ac2c8ca fa22df9 ac2c8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
import json
import gradio as gr
import logging
import traceback
import requests
import importlib
from colorful import *
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
try: from config_private import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
except: from config import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
timeout_bot_msg = '[local] Request timeout, network error. please check proxy settings in config.py.'
def get_full_error(chunk, stream_response):
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def predict_no_ui(inputs, top_p, temperature, history=[]):
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt="", stream=False)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if retry > MAX_RETRY: raise TimeoutError
try:
result = json.loads(response.text)["choices"][0]["message"]["content"]
return result
except Exception as e:
if "choices" not in response.text: print(response.text)
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
stream = True, additional_fn=None):
if additional_fn is not None:
import functional
importlib.reload(functional)
functional = functional.get_functionals()
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
if stream:
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield chatbot, history, "等待响应"
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
history.append(inputs); history.append(" ")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except:
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield chatbot, history, "请求超时"+retry_msg
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
is_head_of_the_stream = True
if stream:
stream_response = response.iter_lines()
while True:
chunk = next(stream_response)
# print(chunk.decode()[6:])
if is_head_of_the_stream:
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
# 判定为数据流的结束,gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
chunkjson = json.loads(chunk.decode()[6:])
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield chatbot, history, status_text
except Exception as e:
traceback.print_exc()
yield chatbot, history, "Json解析不合常规,很可能是文本过长"
chunk = get_full_error(chunk, stream_response)
error_msg = chunk.decode()
if "reduce the length" in error_msg:
chatbot[-1] = (history[-1], "[Local Message] Input (or history) is too long, please reduce input or clear history by refleshing this page.")
history = []
yield chatbot, history, "Json解析不合常规,很可能是文本过长" + error_msg
return
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
payload = {
"model": LLM_MODEL,
"messages": messages,
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
return headers,payload
|