Spaces:
Sleeping
Sleeping
// jpgd.cpp - C++ class for JPEG decompression. | |
// Public domain, Rich Geldreich <[email protected]> | |
// Last updated Apr. 16, 2011 | |
// Alex Evans: Linear memory allocator (taken from jpge.h). | |
// | |
// Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2. | |
// | |
// Chroma upsampling quality: H2V2 is upsampled in the frequency domain, H2V1 and H1V2 are upsampled using point sampling. | |
// Chroma upsampling reference: "Fast Scheme for Image Size Change in the Compressed Domain" | |
// http://vision.ai.uiuc.edu/~dugad/research/dct/index.html | |
// BEGIN EPIC MOD | |
// END EPIC MOD | |
// Set to 1 to enable freq. domain chroma upsampling on images using H2V2 subsampling (0=faster nearest neighbor sampling). | |
// This is slower, but results in higher quality on images with highly saturated colors. | |
namespace jpgd { | |
static inline void *jpgd_malloc(size_t nSize) { return FMemory::Malloc(nSize); } | |
static inline void jpgd_free(void *p) { FMemory::Free(p); } | |
// BEGIN EPIC MOD | |
//@UE3 - use UE3 BGRA encoding instead of assuming RGBA | |
// stolen from IImageWrapper.h | |
enum ERGBFormatJPG | |
{ | |
Invalid = -1, | |
RGBA = 0, | |
BGRA = 1, | |
Gray = 2, | |
}; | |
static ERGBFormatJPG jpg_format; | |
// END EPIC MOD | |
// DCT coefficients are stored in this sequence. | |
static int g_ZAG[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; | |
enum JPEG_MARKER | |
{ | |
M_SOF0 = 0xC0, M_SOF1 = 0xC1, M_SOF2 = 0xC2, M_SOF3 = 0xC3, M_SOF5 = 0xC5, M_SOF6 = 0xC6, M_SOF7 = 0xC7, M_JPG = 0xC8, | |
M_SOF9 = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT = 0xC4, M_DAC = 0xCC, | |
M_RST0 = 0xD0, M_RST1 = 0xD1, M_RST2 = 0xD2, M_RST3 = 0xD3, M_RST4 = 0xD4, M_RST5 = 0xD5, M_RST6 = 0xD6, M_RST7 = 0xD7, | |
M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_DNL = 0xDC, M_DRI = 0xDD, M_DHP = 0xDE, M_EXP = 0xDF, | |
M_APP0 = 0xE0, M_APP15 = 0xEF, M_JPG0 = 0xF0, M_JPG13 = 0xFD, M_COM = 0xFE, M_TEM = 0x01, M_ERROR = 0x100, RST0 = 0xD0 | |
}; | |
enum JPEG_SUBSAMPLING { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 }; | |
// Compiler creates a fast path 1D IDCT for X non-zero columns | |
template <int NONZERO_COLS> | |
struct Row | |
{ | |
static void idct(int* pTemp, const jpgd_block_t* pSrc) | |
{ | |
// ACCESS_COL() will be optimized at compile time to either an array access, or 0. | |
const int z2 = ACCESS_COL(2), z3 = ACCESS_COL(6); | |
const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); | |
const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); | |
const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); | |
const int tmp0 = (ACCESS_COL(0) + ACCESS_COL(4)) << CONST_BITS; | |
const int tmp1 = (ACCESS_COL(0) - ACCESS_COL(4)) << CONST_BITS; | |
const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; | |
const int atmp0 = ACCESS_COL(7), atmp1 = ACCESS_COL(5), atmp2 = ACCESS_COL(3), atmp3 = ACCESS_COL(1); | |
const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; | |
const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); | |
const int az1 = MULTIPLY(bz1, - FIX_0_899976223); | |
const int az2 = MULTIPLY(bz2, - FIX_2_562915447); | |
const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5; | |
const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5; | |
const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; | |
const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; | |
const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; | |
const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; | |
pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS); | |
pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS); | |
pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS); | |
pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS); | |
pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS); | |
pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS); | |
pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS); | |
pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS); | |
} | |
}; | |
template <> | |
struct Row<0> | |
{ | |
static void idct(int* pTemp, const jpgd_block_t* pSrc) | |
{ | |
pTemp; pSrc; | |
} | |
}; | |
template <> | |
struct Row<1> | |
{ | |
static void idct(int* pTemp, const jpgd_block_t* pSrc) | |
{ | |
const int dcval = (pSrc[0] << PASS1_BITS); | |
pTemp[0] = dcval; | |
pTemp[1] = dcval; | |
pTemp[2] = dcval; | |
pTemp[3] = dcval; | |
pTemp[4] = dcval; | |
pTemp[5] = dcval; | |
pTemp[6] = dcval; | |
pTemp[7] = dcval; | |
} | |
}; | |
// Compiler creates a fast path 1D IDCT for X non-zero rows | |
template <int NONZERO_ROWS> | |
struct Col | |
{ | |
static void idct(uint8* pDst_ptr, const int* pTemp) | |
{ | |
// ACCESS_ROW() will be optimized at compile time to either an array access, or 0. | |
const int z2 = ACCESS_ROW(2); | |
const int z3 = ACCESS_ROW(6); | |
const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); | |
const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); | |
const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); | |
const int tmp0 = (ACCESS_ROW(0) + ACCESS_ROW(4)) << CONST_BITS; | |
const int tmp1 = (ACCESS_ROW(0) - ACCESS_ROW(4)) << CONST_BITS; | |
const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; | |
const int atmp0 = ACCESS_ROW(7), atmp1 = ACCESS_ROW(5), atmp2 = ACCESS_ROW(3), atmp3 = ACCESS_ROW(1); | |
const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; | |
const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); | |
const int az1 = MULTIPLY(bz1, - FIX_0_899976223); | |
const int az2 = MULTIPLY(bz2, - FIX_2_562915447); | |
const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5; | |
const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5; | |
const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; | |
const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; | |
const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; | |
const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; | |
int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*0] = (uint8)CLAMP(i); | |
i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*7] = (uint8)CLAMP(i); | |
i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*1] = (uint8)CLAMP(i); | |
i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*6] = (uint8)CLAMP(i); | |
i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*2] = (uint8)CLAMP(i); | |
i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*5] = (uint8)CLAMP(i); | |
i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*3] = (uint8)CLAMP(i); | |
i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS+PASS1_BITS+3); | |
pDst_ptr[8*4] = (uint8)CLAMP(i); | |
} | |
}; | |
template <> | |
struct Col<1> | |
{ | |
static void idct(uint8* pDst_ptr, const int* pTemp) | |
{ | |
int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS+3); | |
const uint8 dcval_clamped = (uint8)CLAMP(dcval); | |
pDst_ptr[0*8] = dcval_clamped; | |
pDst_ptr[1*8] = dcval_clamped; | |
pDst_ptr[2*8] = dcval_clamped; | |
pDst_ptr[3*8] = dcval_clamped; | |
pDst_ptr[4*8] = dcval_clamped; | |
pDst_ptr[5*8] = dcval_clamped; | |
pDst_ptr[6*8] = dcval_clamped; | |
pDst_ptr[7*8] = dcval_clamped; | |
} | |
}; | |
static const uint8 s_idct_row_table[] = | |
{ | |
1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0, | |
4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0, | |
6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0, | |
6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0, | |
8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2, | |
8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2, | |
8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4, | |
8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8, | |
}; | |
static const uint8 s_idct_col_table[] = { 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 }; | |
void idct(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr, int block_max_zag) | |
{ | |
JPGD_ASSERT(block_max_zag >= 1); | |
JPGD_ASSERT(block_max_zag <= 64); | |
if (block_max_zag == 1) | |
{ | |
int k = ((pSrc_ptr[0] + 4) >> 3) + 128; | |
k = CLAMP(k); | |
k = k | (k<<8); | |
k = k | (k<<16); | |
for (int i = 8; i > 0; i--) | |
{ | |
*(int*)&pDst_ptr[0] = k; | |
*(int*)&pDst_ptr[4] = k; | |
pDst_ptr += 8; | |
} | |
return; | |
} | |
int temp[64]; | |
const jpgd_block_t* pSrc = pSrc_ptr; | |
int* pTemp = temp; | |
const uint8* pRow_tab = &s_idct_row_table[(block_max_zag - 1) * 8]; | |
int i; | |
for (i = 8; i > 0; i--, pRow_tab++) | |
{ | |
switch (*pRow_tab) | |
{ | |
case 0: Row<0>::idct(pTemp, pSrc); break; | |
case 1: Row<1>::idct(pTemp, pSrc); break; | |
case 2: Row<2>::idct(pTemp, pSrc); break; | |
case 3: Row<3>::idct(pTemp, pSrc); break; | |
case 4: Row<4>::idct(pTemp, pSrc); break; | |
case 5: Row<5>::idct(pTemp, pSrc); break; | |
case 6: Row<6>::idct(pTemp, pSrc); break; | |
case 7: Row<7>::idct(pTemp, pSrc); break; | |
case 8: Row<8>::idct(pTemp, pSrc); break; | |
} | |
pSrc += 8; | |
pTemp += 8; | |
} | |
pTemp = temp; | |
const int nonzero_rows = s_idct_col_table[block_max_zag - 1]; | |
for (i = 8; i > 0; i--) | |
{ | |
switch (nonzero_rows) | |
{ | |
case 1: Col<1>::idct(pDst_ptr, pTemp); break; | |
case 2: Col<2>::idct(pDst_ptr, pTemp); break; | |
case 3: Col<3>::idct(pDst_ptr, pTemp); break; | |
case 4: Col<4>::idct(pDst_ptr, pTemp); break; | |
case 5: Col<5>::idct(pDst_ptr, pTemp); break; | |
case 6: Col<6>::idct(pDst_ptr, pTemp); break; | |
case 7: Col<7>::idct(pDst_ptr, pTemp); break; | |
case 8: Col<8>::idct(pDst_ptr, pTemp); break; | |
} | |
pTemp++; | |
pDst_ptr++; | |
} | |
} | |
void idct_4x4(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr) | |
{ | |
int temp[64]; | |
int* pTemp = temp; | |
const jpgd_block_t* pSrc = pSrc_ptr; | |
for (int i = 4; i > 0; i--) | |
{ | |
Row<4>::idct(pTemp, pSrc); | |
pSrc += 8; | |
pTemp += 8; | |
} | |
pTemp = temp; | |
for (int i = 8; i > 0; i--) | |
{ | |
Col<4>::idct(pDst_ptr, pTemp); | |
pTemp++; | |
pDst_ptr++; | |
} | |
} | |
// Retrieve one character from the input stream. | |
inline uint jpeg_decoder::get_char() | |
{ | |
// Any bytes remaining in buffer? | |
if (!m_in_buf_left) | |
{ | |
// Try to get more bytes. | |
prep_in_buffer(); | |
// Still nothing to get? | |
if (!m_in_buf_left) | |
{ | |
// Pad the end of the stream with 0xFF 0xD9 (EOI marker) | |
int t = m_tem_flag; | |
m_tem_flag ^= 1; | |
if (t) | |
return 0xD9; | |
else | |
return 0xFF; | |
} | |
} | |
uint c = *m_pIn_buf_ofs++; | |
m_in_buf_left--; | |
return c; | |
} | |
// Same as previous method, except can indicate if the character is a pad character or not. | |
inline uint jpeg_decoder::get_char(bool *pPadding_flag) | |
{ | |
if (!m_in_buf_left) | |
{ | |
prep_in_buffer(); | |
if (!m_in_buf_left) | |
{ | |
*pPadding_flag = true; | |
int t = m_tem_flag; | |
m_tem_flag ^= 1; | |
if (t) | |
return 0xD9; | |
else | |
return 0xFF; | |
} | |
} | |
*pPadding_flag = false; | |
uint c = *m_pIn_buf_ofs++; | |
m_in_buf_left--; | |
return c; | |
} | |
// Inserts a previously retrieved character back into the input buffer. | |
inline void jpeg_decoder::stuff_char(uint8 q) | |
{ | |
*(--m_pIn_buf_ofs) = q; | |
m_in_buf_left++; | |
} | |
// Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered. | |
inline uint8 jpeg_decoder::get_octet() | |
{ | |
bool padding_flag; | |
int c = get_char(&padding_flag); | |
if (c == 0xFF) | |
{ | |
if (padding_flag) | |
return 0xFF; | |
c = get_char(&padding_flag); | |
if (padding_flag) | |
{ | |
stuff_char(0xFF); | |
return 0xFF; | |
} | |
if (c == 0x00) | |
return 0xFF; | |
else | |
{ | |
stuff_char(static_cast<uint8>(c)); | |
stuff_char(0xFF); | |
return 0xFF; | |
} | |
} | |
return static_cast<uint8>(c); | |
} | |
// Retrieves a variable number of bits from the input stream. Does not recognize markers. | |
inline uint jpeg_decoder::get_bits(int num_bits) | |
{ | |
if (!num_bits) | |
return 0; | |
uint i = m_bit_buf >> (32 - num_bits); | |
if ((m_bits_left -= num_bits) <= 0) | |
{ | |
m_bit_buf <<= (num_bits += m_bits_left); | |
uint c1 = get_char(); | |
uint c2 = get_char(); | |
m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2; | |
m_bit_buf <<= -m_bits_left; | |
m_bits_left += 16; | |
JPGD_ASSERT(m_bits_left >= 0); | |
} | |
else | |
m_bit_buf <<= num_bits; | |
return i; | |
} | |
// Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered. | |
inline uint jpeg_decoder::get_bits_no_markers(int num_bits) | |
{ | |
if (!num_bits) | |
return 0; | |
uint i = m_bit_buf >> (32 - num_bits); | |
if ((m_bits_left -= num_bits) <= 0) | |
{ | |
m_bit_buf <<= (num_bits += m_bits_left); | |
if ((m_in_buf_left < 2) || (m_pIn_buf_ofs[0] == 0xFF) || (m_pIn_buf_ofs[1] == 0xFF)) | |
{ | |
uint c1 = get_octet(); | |
uint c2 = get_octet(); | |
m_bit_buf |= (c1 << 8) | c2; | |
} | |
else | |
{ | |
m_bit_buf |= ((uint)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1]; | |
m_in_buf_left -= 2; | |
m_pIn_buf_ofs += 2; | |
} | |
m_bit_buf <<= -m_bits_left; | |
m_bits_left += 16; | |
JPGD_ASSERT(m_bits_left >= 0); | |
} | |
else | |
m_bit_buf <<= num_bits; | |
return i; | |
} | |
// Decodes a Huffman encoded symbol. | |
inline int jpeg_decoder::huff_decode(huff_tables *pH) | |
{ | |
int symbol; | |
// Check first 8-bits: do we have a complete symbol? | |
if ((symbol = pH->look_up[m_bit_buf >> 24]) < 0) | |
{ | |
// Decode more bits, use a tree traversal to find symbol. | |
int ofs = 23; | |
do | |
{ | |
symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))]; | |
ofs--; | |
} while (symbol < 0); | |
get_bits_no_markers(8 + (23 - ofs)); | |
} | |
else | |
get_bits_no_markers(pH->code_size[symbol]); | |
return symbol; | |
} | |
// Decodes a Huffman encoded symbol. | |
inline int jpeg_decoder::huff_decode(huff_tables *pH, int& extra_bits) | |
{ | |
int symbol; | |
// Check first 8-bits: do we have a complete symbol? | |
if ((symbol = pH->look_up2[m_bit_buf >> 24]) < 0) | |
{ | |
// Use a tree traversal to find symbol. | |
int ofs = 23; | |
do | |
{ | |
symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))]; | |
ofs--; | |
} while (symbol < 0); | |
get_bits_no_markers(8 + (23 - ofs)); | |
extra_bits = get_bits_no_markers(symbol & 0xF); | |
} | |
else | |
{ | |
JPGD_ASSERT(((symbol >> 8) & 31) == pH->code_size[symbol & 255] + ((symbol & 0x8000) ? (symbol & 15) : 0)); | |
if (symbol & 0x8000) | |
{ | |
get_bits_no_markers((symbol >> 8) & 31); | |
extra_bits = symbol >> 16; | |
} | |
else | |
{ | |
int code_size = (symbol >> 8) & 31; | |
int num_extra_bits = symbol & 0xF; | |
int bits = code_size + num_extra_bits; | |
if (bits <= (m_bits_left + 16)) | |
extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1); | |
else | |
{ | |
get_bits_no_markers(code_size); | |
extra_bits = get_bits_no_markers(num_extra_bits); | |
} | |
} | |
symbol &= 0xFF; | |
} | |
return symbol; | |
} | |
// Tables and macro used to fully decode the DPCM differences. | |
static const int s_extend_test[16] = { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; | |
static const int s_extend_offset[16] = { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 }; | |
static const int s_extend_mask[] = { 0, (1<<0), (1<<1), (1<<2), (1<<3), (1<<4), (1<<5), (1<<6), (1<<7), (1<<8), (1<<9), (1<<10), (1<<11), (1<<12), (1<<13), (1<<14), (1<<15), (1<<16) }; | |
// Clamps a value between 0-255. | |
inline uint8 jpeg_decoder::clamp(int i) | |
{ | |
if (static_cast<uint>(i) > 255) | |
i = (((~i) >> 31) & 0xFF); | |
return static_cast<uint8>(i); | |
} | |
namespace DCT_Upsample | |
{ | |
struct Matrix44 | |
{ | |
typedef int Element_Type; | |
enum { NUM_ROWS = 4, NUM_COLS = 4 }; | |
Element_Type v[NUM_ROWS][NUM_COLS]; | |
inline int rows() const { return NUM_ROWS; } | |
inline int cols() const { return NUM_COLS; } | |
inline const Element_Type & at(int r, int c) const { return v[r][c]; } | |
inline Element_Type & at(int r, int c) { return v[r][c]; } | |
inline Matrix44() { } | |
inline Matrix44& operator += (const Matrix44& a) | |
{ | |
for (int r = 0; r < NUM_ROWS; r++) | |
{ | |
at(r, 0) += a.at(r, 0); | |
at(r, 1) += a.at(r, 1); | |
at(r, 2) += a.at(r, 2); | |
at(r, 3) += a.at(r, 3); | |
} | |
return *this; | |
} | |
inline Matrix44& operator -= (const Matrix44& a) | |
{ | |
for (int r = 0; r < NUM_ROWS; r++) | |
{ | |
at(r, 0) -= a.at(r, 0); | |
at(r, 1) -= a.at(r, 1); | |
at(r, 2) -= a.at(r, 2); | |
at(r, 3) -= a.at(r, 3); | |
} | |
return *this; | |
} | |
friend inline Matrix44 operator + (const Matrix44& a, const Matrix44& b) | |
{ | |
Matrix44 ret; | |
for (int r = 0; r < NUM_ROWS; r++) | |
{ | |
ret.at(r, 0) = a.at(r, 0) + b.at(r, 0); | |
ret.at(r, 1) = a.at(r, 1) + b.at(r, 1); | |
ret.at(r, 2) = a.at(r, 2) + b.at(r, 2); | |
ret.at(r, 3) = a.at(r, 3) + b.at(r, 3); | |
} | |
return ret; | |
} | |
friend inline Matrix44 operator - (const Matrix44& a, const Matrix44& b) | |
{ | |
Matrix44 ret; | |
for (int r = 0; r < NUM_ROWS; r++) | |
{ | |
ret.at(r, 0) = a.at(r, 0) - b.at(r, 0); | |
ret.at(r, 1) = a.at(r, 1) - b.at(r, 1); | |
ret.at(r, 2) = a.at(r, 2) - b.at(r, 2); | |
ret.at(r, 3) = a.at(r, 3) - b.at(r, 3); | |
} | |
return ret; | |
} | |
static inline void add_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b) | |
{ | |
for (int r = 0; r < 4; r++) | |
{ | |
pDst[0*8 + r] = static_cast<jpgd_block_t>(a.at(r, 0) + b.at(r, 0)); | |
pDst[1*8 + r] = static_cast<jpgd_block_t>(a.at(r, 1) + b.at(r, 1)); | |
pDst[2*8 + r] = static_cast<jpgd_block_t>(a.at(r, 2) + b.at(r, 2)); | |
pDst[3*8 + r] = static_cast<jpgd_block_t>(a.at(r, 3) + b.at(r, 3)); | |
} | |
} | |
static inline void sub_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b) | |
{ | |
for (int r = 0; r < 4; r++) | |
{ | |
pDst[0*8 + r] = static_cast<jpgd_block_t>(a.at(r, 0) - b.at(r, 0)); | |
pDst[1*8 + r] = static_cast<jpgd_block_t>(a.at(r, 1) - b.at(r, 1)); | |
pDst[2*8 + r] = static_cast<jpgd_block_t>(a.at(r, 2) - b.at(r, 2)); | |
pDst[3*8 + r] = static_cast<jpgd_block_t>(a.at(r, 3) - b.at(r, 3)); | |
} | |
} | |
}; | |
const int FRACT_BITS = 10; | |
const int SCALE = 1 << FRACT_BITS; | |
typedef int Temp_Type; | |
// Any decent C++ compiler will optimize this at compile time to a 0, or an array access. | |
// NUM_ROWS/NUM_COLS = # of non-zero rows/cols in input matrix | |
template<int NUM_ROWS, int NUM_COLS> | |
struct P_Q | |
{ | |
static void calc(Matrix44& P, Matrix44& Q, const jpgd_block_t* pSrc) | |
{ | |
// 4x8 = 4x8 times 8x8, matrix 0 is constant | |
const Temp_Type X000 = AT(0, 0); | |
const Temp_Type X001 = AT(0, 1); | |
const Temp_Type X002 = AT(0, 2); | |
const Temp_Type X003 = AT(0, 3); | |
const Temp_Type X004 = AT(0, 4); | |
const Temp_Type X005 = AT(0, 5); | |
const Temp_Type X006 = AT(0, 6); | |
const Temp_Type X007 = AT(0, 7); | |
const Temp_Type X010 = D(F(0.415735f) * AT(1, 0) + F(0.791065f) * AT(3, 0) + F(-0.352443f) * AT(5, 0) + F(0.277785f) * AT(7, 0)); | |
const Temp_Type X011 = D(F(0.415735f) * AT(1, 1) + F(0.791065f) * AT(3, 1) + F(-0.352443f) * AT(5, 1) + F(0.277785f) * AT(7, 1)); | |
const Temp_Type X012 = D(F(0.415735f) * AT(1, 2) + F(0.791065f) * AT(3, 2) + F(-0.352443f) * AT(5, 2) + F(0.277785f) * AT(7, 2)); | |
const Temp_Type X013 = D(F(0.415735f) * AT(1, 3) + F(0.791065f) * AT(3, 3) + F(-0.352443f) * AT(5, 3) + F(0.277785f) * AT(7, 3)); | |
const Temp_Type X014 = D(F(0.415735f) * AT(1, 4) + F(0.791065f) * AT(3, 4) + F(-0.352443f) * AT(5, 4) + F(0.277785f) * AT(7, 4)); | |
const Temp_Type X015 = D(F(0.415735f) * AT(1, 5) + F(0.791065f) * AT(3, 5) + F(-0.352443f) * AT(5, 5) + F(0.277785f) * AT(7, 5)); | |
const Temp_Type X016 = D(F(0.415735f) * AT(1, 6) + F(0.791065f) * AT(3, 6) + F(-0.352443f) * AT(5, 6) + F(0.277785f) * AT(7, 6)); | |
const Temp_Type X017 = D(F(0.415735f) * AT(1, 7) + F(0.791065f) * AT(3, 7) + F(-0.352443f) * AT(5, 7) + F(0.277785f) * AT(7, 7)); | |
const Temp_Type X020 = AT(4, 0); | |
const Temp_Type X021 = AT(4, 1); | |
const Temp_Type X022 = AT(4, 2); | |
const Temp_Type X023 = AT(4, 3); | |
const Temp_Type X024 = AT(4, 4); | |
const Temp_Type X025 = AT(4, 5); | |
const Temp_Type X026 = AT(4, 6); | |
const Temp_Type X027 = AT(4, 7); | |
const Temp_Type X030 = D(F(0.022887f) * AT(1, 0) + F(-0.097545f) * AT(3, 0) + F(0.490393f) * AT(5, 0) + F(0.865723f) * AT(7, 0)); | |
const Temp_Type X031 = D(F(0.022887f) * AT(1, 1) + F(-0.097545f) * AT(3, 1) + F(0.490393f) * AT(5, 1) + F(0.865723f) * AT(7, 1)); | |
const Temp_Type X032 = D(F(0.022887f) * AT(1, 2) + F(-0.097545f) * AT(3, 2) + F(0.490393f) * AT(5, 2) + F(0.865723f) * AT(7, 2)); | |
const Temp_Type X033 = D(F(0.022887f) * AT(1, 3) + F(-0.097545f) * AT(3, 3) + F(0.490393f) * AT(5, 3) + F(0.865723f) * AT(7, 3)); | |
const Temp_Type X034 = D(F(0.022887f) * AT(1, 4) + F(-0.097545f) * AT(3, 4) + F(0.490393f) * AT(5, 4) + F(0.865723f) * AT(7, 4)); | |
const Temp_Type X035 = D(F(0.022887f) * AT(1, 5) + F(-0.097545f) * AT(3, 5) + F(0.490393f) * AT(5, 5) + F(0.865723f) * AT(7, 5)); | |
const Temp_Type X036 = D(F(0.022887f) * AT(1, 6) + F(-0.097545f) * AT(3, 6) + F(0.490393f) * AT(5, 6) + F(0.865723f) * AT(7, 6)); | |
const Temp_Type X037 = D(F(0.022887f) * AT(1, 7) + F(-0.097545f) * AT(3, 7) + F(0.490393f) * AT(5, 7) + F(0.865723f) * AT(7, 7)); | |
// 4x4 = 4x8 times 8x4, matrix 1 is constant | |
P.at(0, 0) = X000; | |
P.at(0, 1) = D(X001 * F(0.415735f) + X003 * F(0.791065f) + X005 * F(-0.352443f) + X007 * F(0.277785f)); | |
P.at(0, 2) = X004; | |
P.at(0, 3) = D(X001 * F(0.022887f) + X003 * F(-0.097545f) + X005 * F(0.490393f) + X007 * F(0.865723f)); | |
P.at(1, 0) = X010; | |
P.at(1, 1) = D(X011 * F(0.415735f) + X013 * F(0.791065f) + X015 * F(-0.352443f) + X017 * F(0.277785f)); | |
P.at(1, 2) = X014; | |
P.at(1, 3) = D(X011 * F(0.022887f) + X013 * F(-0.097545f) + X015 * F(0.490393f) + X017 * F(0.865723f)); | |
P.at(2, 0) = X020; | |
P.at(2, 1) = D(X021 * F(0.415735f) + X023 * F(0.791065f) + X025 * F(-0.352443f) + X027 * F(0.277785f)); | |
P.at(2, 2) = X024; | |
P.at(2, 3) = D(X021 * F(0.022887f) + X023 * F(-0.097545f) + X025 * F(0.490393f) + X027 * F(0.865723f)); | |
P.at(3, 0) = X030; | |
P.at(3, 1) = D(X031 * F(0.415735f) + X033 * F(0.791065f) + X035 * F(-0.352443f) + X037 * F(0.277785f)); | |
P.at(3, 2) = X034; | |
P.at(3, 3) = D(X031 * F(0.022887f) + X033 * F(-0.097545f) + X035 * F(0.490393f) + X037 * F(0.865723f)); | |
// 40 muls 24 adds | |
// 4x4 = 4x8 times 8x4, matrix 1 is constant | |
Q.at(0, 0) = D(X001 * F(0.906127f) + X003 * F(-0.318190f) + X005 * F(0.212608f) + X007 * F(-0.180240f)); | |
Q.at(0, 1) = X002; | |
Q.at(0, 2) = D(X001 * F(-0.074658f) + X003 * F(0.513280f) + X005 * F(0.768178f) + X007 * F(-0.375330f)); | |
Q.at(0, 3) = X006; | |
Q.at(1, 0) = D(X011 * F(0.906127f) + X013 * F(-0.318190f) + X015 * F(0.212608f) + X017 * F(-0.180240f)); | |
Q.at(1, 1) = X012; | |
Q.at(1, 2) = D(X011 * F(-0.074658f) + X013 * F(0.513280f) + X015 * F(0.768178f) + X017 * F(-0.375330f)); | |
Q.at(1, 3) = X016; | |
Q.at(2, 0) = D(X021 * F(0.906127f) + X023 * F(-0.318190f) + X025 * F(0.212608f) + X027 * F(-0.180240f)); | |
Q.at(2, 1) = X022; | |
Q.at(2, 2) = D(X021 * F(-0.074658f) + X023 * F(0.513280f) + X025 * F(0.768178f) + X027 * F(-0.375330f)); | |
Q.at(2, 3) = X026; | |
Q.at(3, 0) = D(X031 * F(0.906127f) + X033 * F(-0.318190f) + X035 * F(0.212608f) + X037 * F(-0.180240f)); | |
Q.at(3, 1) = X032; | |
Q.at(3, 2) = D(X031 * F(-0.074658f) + X033 * F(0.513280f) + X035 * F(0.768178f) + X037 * F(-0.375330f)); | |
Q.at(3, 3) = X036; | |
// 40 muls 24 adds | |
} | |
}; | |
template<int NUM_ROWS, int NUM_COLS> | |
struct R_S | |
{ | |
static void calc(Matrix44& R, Matrix44& S, const jpgd_block_t* pSrc) | |
{ | |
// 4x8 = 4x8 times 8x8, matrix 0 is constant | |
const Temp_Type X100 = D(F(0.906127f) * AT(1, 0) + F(-0.318190f) * AT(3, 0) + F(0.212608f) * AT(5, 0) + F(-0.180240f) * AT(7, 0)); | |
const Temp_Type X101 = D(F(0.906127f) * AT(1, 1) + F(-0.318190f) * AT(3, 1) + F(0.212608f) * AT(5, 1) + F(-0.180240f) * AT(7, 1)); | |
const Temp_Type X102 = D(F(0.906127f) * AT(1, 2) + F(-0.318190f) * AT(3, 2) + F(0.212608f) * AT(5, 2) + F(-0.180240f) * AT(7, 2)); | |
const Temp_Type X103 = D(F(0.906127f) * AT(1, 3) + F(-0.318190f) * AT(3, 3) + F(0.212608f) * AT(5, 3) + F(-0.180240f) * AT(7, 3)); | |
const Temp_Type X104 = D(F(0.906127f) * AT(1, 4) + F(-0.318190f) * AT(3, 4) + F(0.212608f) * AT(5, 4) + F(-0.180240f) * AT(7, 4)); | |
const Temp_Type X105 = D(F(0.906127f) * AT(1, 5) + F(-0.318190f) * AT(3, 5) + F(0.212608f) * AT(5, 5) + F(-0.180240f) * AT(7, 5)); | |
const Temp_Type X106 = D(F(0.906127f) * AT(1, 6) + F(-0.318190f) * AT(3, 6) + F(0.212608f) * AT(5, 6) + F(-0.180240f) * AT(7, 6)); | |
const Temp_Type X107 = D(F(0.906127f) * AT(1, 7) + F(-0.318190f) * AT(3, 7) + F(0.212608f) * AT(5, 7) + F(-0.180240f) * AT(7, 7)); | |
const Temp_Type X110 = AT(2, 0); | |
const Temp_Type X111 = AT(2, 1); | |
const Temp_Type X112 = AT(2, 2); | |
const Temp_Type X113 = AT(2, 3); | |
const Temp_Type X114 = AT(2, 4); | |
const Temp_Type X115 = AT(2, 5); | |
const Temp_Type X116 = AT(2, 6); | |
const Temp_Type X117 = AT(2, 7); | |
const Temp_Type X120 = D(F(-0.074658f) * AT(1, 0) + F(0.513280f) * AT(3, 0) + F(0.768178f) * AT(5, 0) + F(-0.375330f) * AT(7, 0)); | |
const Temp_Type X121 = D(F(-0.074658f) * AT(1, 1) + F(0.513280f) * AT(3, 1) + F(0.768178f) * AT(5, 1) + F(-0.375330f) * AT(7, 1)); | |
const Temp_Type X122 = D(F(-0.074658f) * AT(1, 2) + F(0.513280f) * AT(3, 2) + F(0.768178f) * AT(5, 2) + F(-0.375330f) * AT(7, 2)); | |
const Temp_Type X123 = D(F(-0.074658f) * AT(1, 3) + F(0.513280f) * AT(3, 3) + F(0.768178f) * AT(5, 3) + F(-0.375330f) * AT(7, 3)); | |
const Temp_Type X124 = D(F(-0.074658f) * AT(1, 4) + F(0.513280f) * AT(3, 4) + F(0.768178f) * AT(5, 4) + F(-0.375330f) * AT(7, 4)); | |
const Temp_Type X125 = D(F(-0.074658f) * AT(1, 5) + F(0.513280f) * AT(3, 5) + F(0.768178f) * AT(5, 5) + F(-0.375330f) * AT(7, 5)); | |
const Temp_Type X126 = D(F(-0.074658f) * AT(1, 6) + F(0.513280f) * AT(3, 6) + F(0.768178f) * AT(5, 6) + F(-0.375330f) * AT(7, 6)); | |
const Temp_Type X127 = D(F(-0.074658f) * AT(1, 7) + F(0.513280f) * AT(3, 7) + F(0.768178f) * AT(5, 7) + F(-0.375330f) * AT(7, 7)); | |
const Temp_Type X130 = AT(6, 0); | |
const Temp_Type X131 = AT(6, 1); | |
const Temp_Type X132 = AT(6, 2); | |
const Temp_Type X133 = AT(6, 3); | |
const Temp_Type X134 = AT(6, 4); | |
const Temp_Type X135 = AT(6, 5); | |
const Temp_Type X136 = AT(6, 6); | |
const Temp_Type X137 = AT(6, 7); | |
// 80 muls 48 adds | |
// 4x4 = 4x8 times 8x4, matrix 1 is constant | |
R.at(0, 0) = X100; | |
R.at(0, 1) = D(X101 * F(0.415735f) + X103 * F(0.791065f) + X105 * F(-0.352443f) + X107 * F(0.277785f)); | |
R.at(0, 2) = X104; | |
R.at(0, 3) = D(X101 * F(0.022887f) + X103 * F(-0.097545f) + X105 * F(0.490393f) + X107 * F(0.865723f)); | |
R.at(1, 0) = X110; | |
R.at(1, 1) = D(X111 * F(0.415735f) + X113 * F(0.791065f) + X115 * F(-0.352443f) + X117 * F(0.277785f)); | |
R.at(1, 2) = X114; | |
R.at(1, 3) = D(X111 * F(0.022887f) + X113 * F(-0.097545f) + X115 * F(0.490393f) + X117 * F(0.865723f)); | |
R.at(2, 0) = X120; | |
R.at(2, 1) = D(X121 * F(0.415735f) + X123 * F(0.791065f) + X125 * F(-0.352443f) + X127 * F(0.277785f)); | |
R.at(2, 2) = X124; | |
R.at(2, 3) = D(X121 * F(0.022887f) + X123 * F(-0.097545f) + X125 * F(0.490393f) + X127 * F(0.865723f)); | |
R.at(3, 0) = X130; | |
R.at(3, 1) = D(X131 * F(0.415735f) + X133 * F(0.791065f) + X135 * F(-0.352443f) + X137 * F(0.277785f)); | |
R.at(3, 2) = X134; | |
R.at(3, 3) = D(X131 * F(0.022887f) + X133 * F(-0.097545f) + X135 * F(0.490393f) + X137 * F(0.865723f)); | |
// 40 muls 24 adds | |
// 4x4 = 4x8 times 8x4, matrix 1 is constant | |
S.at(0, 0) = D(X101 * F(0.906127f) + X103 * F(-0.318190f) + X105 * F(0.212608f) + X107 * F(-0.180240f)); | |
S.at(0, 1) = X102; | |
S.at(0, 2) = D(X101 * F(-0.074658f) + X103 * F(0.513280f) + X105 * F(0.768178f) + X107 * F(-0.375330f)); | |
S.at(0, 3) = X106; | |
S.at(1, 0) = D(X111 * F(0.906127f) + X113 * F(-0.318190f) + X115 * F(0.212608f) + X117 * F(-0.180240f)); | |
S.at(1, 1) = X112; | |
S.at(1, 2) = D(X111 * F(-0.074658f) + X113 * F(0.513280f) + X115 * F(0.768178f) + X117 * F(-0.375330f)); | |
S.at(1, 3) = X116; | |
S.at(2, 0) = D(X121 * F(0.906127f) + X123 * F(-0.318190f) + X125 * F(0.212608f) + X127 * F(-0.180240f)); | |
S.at(2, 1) = X122; | |
S.at(2, 2) = D(X121 * F(-0.074658f) + X123 * F(0.513280f) + X125 * F(0.768178f) + X127 * F(-0.375330f)); | |
S.at(2, 3) = X126; | |
S.at(3, 0) = D(X131 * F(0.906127f) + X133 * F(-0.318190f) + X135 * F(0.212608f) + X137 * F(-0.180240f)); | |
S.at(3, 1) = X132; | |
S.at(3, 2) = D(X131 * F(-0.074658f) + X133 * F(0.513280f) + X135 * F(0.768178f) + X137 * F(-0.375330f)); | |
S.at(3, 3) = X136; | |
// 40 muls 24 adds | |
} | |
}; | |
} // end namespace DCT_Upsample | |
// Unconditionally frees all allocated m_blocks. | |
void jpeg_decoder::free_all_blocks() | |
{ | |
m_pStream = NULL; | |
for (mem_block *b = m_pMem_blocks; b; ) | |
{ | |
mem_block *n = b->m_pNext; | |
jpgd_free(b); | |
b = n; | |
} | |
m_pMem_blocks = NULL; | |
} | |
// This method handles all errors. | |
// It could easily be changed to use C++ exceptions. | |
void jpeg_decoder::stop_decoding(jpgd_status status) | |
{ | |
m_error_code = status; | |
free_all_blocks(); | |
longjmp(m_jmp_state, status); | |
// we shouldn't get here as longjmp shouldn't return, but we put it here to make it explicit | |
// that this function doesn't return, otherwise we get this error: | |
// | |
// error : function declared 'noreturn' should not return | |
exit(1); | |
} | |
void *jpeg_decoder::alloc(size_t nSize, bool zero) | |
{ | |
nSize = (JPGD_MAX(nSize, 1) + 3) & ~3; | |
char *rv = NULL; | |
for (mem_block *b = m_pMem_blocks; b; b = b->m_pNext) | |
{ | |
if ((b->m_used_count + nSize) <= b->m_size) | |
{ | |
rv = b->m_data + b->m_used_count; | |
b->m_used_count += nSize; | |
break; | |
} | |
} | |
if (!rv) | |
{ | |
int capacity = JPGD_MAX(32768 - 256, (nSize + 2047) & ~2047); | |
mem_block *b = (mem_block*)jpgd_malloc(sizeof(mem_block) + capacity); | |
if (!b) stop_decoding(JPGD_NOTENOUGHMEM); | |
b->m_pNext = m_pMem_blocks; m_pMem_blocks = b; | |
b->m_used_count = nSize; | |
b->m_size = capacity; | |
rv = b->m_data; | |
} | |
if (zero) memset(rv, 0, nSize); | |
return rv; | |
} | |
void jpeg_decoder::word_clear(void *p, uint16 c, uint n) | |
{ | |
uint8 *pD = (uint8*)p; | |
const uint8 l = c & 0xFF, h = (c >> 8) & 0xFF; | |
while (n) | |
{ | |
pD[0] = l; pD[1] = h; pD += 2; | |
n--; | |
} | |
} | |
// Refill the input buffer. | |
// This method will sit in a loop until (A) the buffer is full or (B) | |
// the stream's read() method reports and end of file condition. | |
void jpeg_decoder::prep_in_buffer() | |
{ | |
m_in_buf_left = 0; | |
m_pIn_buf_ofs = m_in_buf; | |
if (m_eof_flag) | |
return; | |
do | |
{ | |
int bytes_read = m_pStream->read(m_in_buf + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag); | |
if (bytes_read == -1) | |
stop_decoding(JPGD_STREAM_READ); | |
m_in_buf_left += bytes_read; | |
} while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag)); | |
m_total_bytes_read += m_in_buf_left; | |
// Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid). | |
// (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.) | |
word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64); | |
} | |
// Read a Huffman code table. | |
void jpeg_decoder::read_dht_marker() | |
{ | |
int i, index, count; | |
uint8 huff_num[17]; | |
uint8 huff_val[256]; | |
uint num_left = get_bits(16); | |
if (num_left < 2) | |
stop_decoding(JPGD_BAD_DHT_MARKER); | |
num_left -= 2; | |
while (num_left) | |
{ | |
index = get_bits(8); | |
huff_num[0] = 0; | |
count = 0; | |
for (i = 1; i <= 16; i++) | |
{ | |
huff_num[i] = static_cast<uint8>(get_bits(8)); | |
count += huff_num[i]; | |
} | |
if (count > 255) | |
stop_decoding(JPGD_BAD_DHT_COUNTS); | |
for (i = 0; i < count; i++) | |
huff_val[i] = static_cast<uint8>(get_bits(8)); | |
i = 1 + 16 + count; | |
if (num_left < (uint)i) | |
stop_decoding(JPGD_BAD_DHT_MARKER); | |
num_left -= i; | |
if ((index & 0x10) > 0x10) | |
stop_decoding(JPGD_BAD_DHT_INDEX); | |
index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1); | |
if (index >= JPGD_MAX_HUFF_TABLES) | |
stop_decoding(JPGD_BAD_DHT_INDEX); | |
if (!m_huff_num[index]) | |
m_huff_num[index] = (uint8 *)alloc(17); | |
if (!m_huff_val[index]) | |
m_huff_val[index] = (uint8 *)alloc(256); | |
m_huff_ac[index] = (index & 0x10) != 0; | |
memcpy(m_huff_num[index], huff_num, 17); | |
memcpy(m_huff_val[index], huff_val, 256); | |
} | |
} | |
// Read a quantization table. | |
void jpeg_decoder::read_dqt_marker() | |
{ | |
int n, i, prec; | |
uint num_left; | |
uint temp; | |
num_left = get_bits(16); | |
if (num_left < 2) | |
stop_decoding(JPGD_BAD_DQT_MARKER); | |
num_left -= 2; | |
while (num_left) | |
{ | |
n = get_bits(8); | |
prec = n >> 4; | |
n &= 0x0F; | |
if (n >= JPGD_MAX_QUANT_TABLES) | |
stop_decoding(JPGD_BAD_DQT_TABLE); | |
if (!m_quant[n]) | |
m_quant[n] = (jpgd_quant_t *)alloc(64 * sizeof(jpgd_quant_t)); | |
// read quantization entries, in zag order | |
for (i = 0; i < 64; i++) | |
{ | |
temp = get_bits(8); | |
if (prec) | |
temp = (temp << 8) + get_bits(8); | |
m_quant[n][i] = static_cast<jpgd_quant_t>(temp); | |
} | |
i = 64 + 1; | |
if (prec) | |
i += 64; | |
if (num_left < (uint)i) | |
stop_decoding(JPGD_BAD_DQT_LENGTH); | |
num_left -= i; | |
} | |
} | |
// Read the start of frame (SOF) marker. | |
void jpeg_decoder::read_sof_marker() | |
{ | |
int i; | |
uint num_left; | |
num_left = get_bits(16); | |
if (get_bits(8) != 8) /* precision: sorry, only 8-bit precision is supported right now */ | |
stop_decoding(JPGD_BAD_PRECISION); | |
m_image_y_size = get_bits(16); | |
if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT)) | |
stop_decoding(JPGD_BAD_HEIGHT); | |
m_image_x_size = get_bits(16); | |
if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH)) | |
stop_decoding(JPGD_BAD_WIDTH); | |
m_comps_in_frame = get_bits(8); | |
if (m_comps_in_frame > JPGD_MAX_COMPONENTS) | |
stop_decoding(JPGD_TOO_MANY_COMPONENTS); | |
if (num_left != (uint)(m_comps_in_frame * 3 + 8)) | |
stop_decoding(JPGD_BAD_SOF_LENGTH); | |
for (i = 0; i < m_comps_in_frame; i++) | |
{ | |
m_comp_ident[i] = get_bits(8); | |
m_comp_h_samp[i] = get_bits(4); | |
m_comp_v_samp[i] = get_bits(4); | |
m_comp_quant[i] = get_bits(8); | |
} | |
} | |
// Used to skip unrecognized markers. | |
void jpeg_decoder::skip_variable_marker() | |
{ | |
uint num_left; | |
num_left = get_bits(16); | |
if (num_left < 2) | |
stop_decoding(JPGD_BAD_VARIABLE_MARKER); | |
num_left -= 2; | |
while (num_left) | |
{ | |
get_bits(8); | |
num_left--; | |
} | |
} | |
// Read a define restart interval (DRI) marker. | |
void jpeg_decoder::read_dri_marker() | |
{ | |
if (get_bits(16) != 4) | |
stop_decoding(JPGD_BAD_DRI_LENGTH); | |
m_restart_interval = get_bits(16); | |
} | |
// Read a start of scan (SOS) marker. | |
void jpeg_decoder::read_sos_marker() | |
{ | |
uint num_left; | |
int i, ci, n, c, cc; | |
num_left = get_bits(16); | |
n = get_bits(8); | |
m_comps_in_scan = n; | |
num_left -= 3; | |
if ( (num_left != (uint)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN) ) | |
stop_decoding(JPGD_BAD_SOS_LENGTH); | |
for (i = 0; i < n; i++) | |
{ | |
cc = get_bits(8); | |
c = get_bits(8); | |
num_left -= 2; | |
for (ci = 0; ci < m_comps_in_frame; ci++) | |
if (cc == m_comp_ident[ci]) | |
break; | |
if (ci >= m_comps_in_frame) | |
stop_decoding(JPGD_BAD_SOS_COMP_ID); | |
m_comp_list[i] = ci; | |
m_comp_dc_tab[ci] = (c >> 4) & 15; | |
m_comp_ac_tab[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1); | |
} | |
m_spectral_start = get_bits(8); | |
m_spectral_end = get_bits(8); | |
m_successive_high = get_bits(4); | |
m_successive_low = get_bits(4); | |
if (!m_progressive_flag) | |
{ | |
m_spectral_start = 0; | |
m_spectral_end = 63; | |
} | |
num_left -= 3; | |
while (num_left) /* read past whatever is num_left */ | |
{ | |
get_bits(8); | |
num_left--; | |
} | |
} | |
// Finds the next marker. | |
int jpeg_decoder::next_marker() | |
{ | |
uint c, bytes; | |
bytes = 0; | |
do | |
{ | |
do | |
{ | |
bytes++; | |
c = get_bits(8); | |
} while (c != 0xFF); | |
do | |
{ | |
c = get_bits(8); | |
} while (c == 0xFF); | |
} while (c == 0); | |
// If bytes > 0 here, there where extra bytes before the marker (not good). | |
return c; | |
} | |
// Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is | |
// encountered. | |
int jpeg_decoder::process_markers() | |
{ | |
int c; | |
for ( ; ; ) | |
{ | |
c = next_marker(); | |
switch (c) | |
{ | |
case M_SOF0: | |
case M_SOF1: | |
case M_SOF2: | |
case M_SOF3: | |
case M_SOF5: | |
case M_SOF6: | |
case M_SOF7: | |
// case M_JPG: | |
case M_SOF9: | |
case M_SOF10: | |
case M_SOF11: | |
case M_SOF13: | |
case M_SOF14: | |
case M_SOF15: | |
case M_SOI: | |
case M_EOI: | |
case M_SOS: | |
{ | |
return c; | |
} | |
case M_DHT: | |
{ | |
read_dht_marker(); | |
break; | |
} | |
// No arithmitic support - dumb patents! | |
case M_DAC: | |
{ | |
stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); | |
break; | |
} | |
case M_DQT: | |
{ | |
read_dqt_marker(); | |
break; | |
} | |
case M_DRI: | |
{ | |
read_dri_marker(); | |
break; | |
} | |
//case M_APP0: /* no need to read the JFIF marker */ | |
case M_JPG: | |
case M_RST0: /* no parameters */ | |
case M_RST1: | |
case M_RST2: | |
case M_RST3: | |
case M_RST4: | |
case M_RST5: | |
case M_RST6: | |
case M_RST7: | |
case M_TEM: | |
{ | |
stop_decoding(JPGD_UNEXPECTED_MARKER); | |
break; | |
} | |
default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */ | |
{ | |
skip_variable_marker(); | |
break; | |
} | |
} | |
} | |
} | |
// Finds the start of image (SOI) marker. | |
// This code is rather defensive: it only checks the first 512 bytes to avoid | |
// false positives. | |
void jpeg_decoder::locate_soi_marker() | |
{ | |
uint lastchar, thischar; | |
uint bytesleft; | |
lastchar = get_bits(8); | |
thischar = get_bits(8); | |
/* ok if it's a normal JPEG file without a special header */ | |
if ((lastchar == 0xFF) && (thischar == M_SOI)) | |
return; | |
bytesleft = 4096; //512; | |
for ( ; ; ) | |
{ | |
if (--bytesleft == 0) | |
stop_decoding(JPGD_NOT_JPEG); | |
lastchar = thischar; | |
thischar = get_bits(8); | |
if (lastchar == 0xFF) | |
{ | |
if (thischar == M_SOI) | |
break; | |
else if (thischar == M_EOI) // get_bits will keep returning M_EOI if we read past the end | |
stop_decoding(JPGD_NOT_JPEG); | |
} | |
} | |
// Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad. | |
thischar = (m_bit_buf >> 24) & 0xFF; | |
if (thischar != 0xFF) | |
stop_decoding(JPGD_NOT_JPEG); | |
} | |
// Find a start of frame (SOF) marker. | |
void jpeg_decoder::locate_sof_marker() | |
{ | |
locate_soi_marker(); | |
int c = process_markers(); | |
switch (c) | |
{ | |
case M_SOF2: | |
m_progressive_flag = JPGD_TRUE; | |
case M_SOF0: /* baseline DCT */ | |
case M_SOF1: /* extended sequential DCT */ | |
{ | |
read_sof_marker(); | |
break; | |
} | |
case M_SOF9: /* Arithmitic coding */ | |
{ | |
stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); | |
break; | |
} | |
default: | |
{ | |
stop_decoding(JPGD_UNSUPPORTED_MARKER); | |
break; | |
} | |
} | |
} | |
// Find a start of scan (SOS) marker. | |
int jpeg_decoder::locate_sos_marker() | |
{ | |
int c; | |
c = process_markers(); | |
if (c == M_EOI) | |
return JPGD_FALSE; | |
else if (c != M_SOS) | |
stop_decoding(JPGD_UNEXPECTED_MARKER); | |
read_sos_marker(); | |
return JPGD_TRUE; | |
} | |
// Reset everything to default/uninitialized state. | |
void jpeg_decoder::init(jpeg_decoder_stream *pStream) | |
{ | |
m_pMem_blocks = NULL; | |
m_error_code = JPGD_SUCCESS; | |
m_ready_flag = false; | |
m_image_x_size = m_image_y_size = 0; | |
m_pStream = pStream; | |
m_progressive_flag = JPGD_FALSE; | |
memset(m_huff_ac, 0, sizeof(m_huff_ac)); | |
memset(m_huff_num, 0, sizeof(m_huff_num)); | |
memset(m_huff_val, 0, sizeof(m_huff_val)); | |
memset(m_quant, 0, sizeof(m_quant)); | |
m_scan_type = 0; | |
m_comps_in_frame = 0; | |
memset(m_comp_h_samp, 0, sizeof(m_comp_h_samp)); | |
memset(m_comp_v_samp, 0, sizeof(m_comp_v_samp)); | |
memset(m_comp_quant, 0, sizeof(m_comp_quant)); | |
memset(m_comp_ident, 0, sizeof(m_comp_ident)); | |
memset(m_comp_h_blocks, 0, sizeof(m_comp_h_blocks)); | |
memset(m_comp_v_blocks, 0, sizeof(m_comp_v_blocks)); | |
m_comps_in_scan = 0; | |
memset(m_comp_list, 0, sizeof(m_comp_list)); | |
memset(m_comp_dc_tab, 0, sizeof(m_comp_dc_tab)); | |
memset(m_comp_ac_tab, 0, sizeof(m_comp_ac_tab)); | |
m_spectral_start = 0; | |
m_spectral_end = 0; | |
m_successive_low = 0; | |
m_successive_high = 0; | |
m_max_mcu_x_size = 0; | |
m_max_mcu_y_size = 0; | |
m_blocks_per_mcu = 0; | |
m_max_blocks_per_row = 0; | |
m_mcus_per_row = 0; | |
m_mcus_per_col = 0; | |
m_expanded_blocks_per_component = 0; | |
m_expanded_blocks_per_mcu = 0; | |
m_expanded_blocks_per_row = 0; | |
m_freq_domain_chroma_upsample = false; | |
memset(m_mcu_org, 0, sizeof(m_mcu_org)); | |
m_total_lines_left = 0; | |
m_mcu_lines_left = 0; | |
m_real_dest_bytes_per_scan_line = 0; | |
m_dest_bytes_per_scan_line = 0; | |
m_dest_bytes_per_pixel = 0; | |
memset(m_pHuff_tabs, 0, sizeof(m_pHuff_tabs)); | |
memset(m_dc_coeffs, 0, sizeof(m_dc_coeffs)); | |
memset(m_ac_coeffs, 0, sizeof(m_ac_coeffs)); | |
memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); | |
m_eob_run = 0; | |
memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); | |
m_pIn_buf_ofs = m_in_buf; | |
m_in_buf_left = 0; | |
m_eof_flag = false; | |
m_tem_flag = 0; | |
memset(m_in_buf_pad_start, 0, sizeof(m_in_buf_pad_start)); | |
memset(m_in_buf, 0, sizeof(m_in_buf)); | |
memset(m_in_buf_pad_end, 0, sizeof(m_in_buf_pad_end)); | |
m_restart_interval = 0; | |
m_restarts_left = 0; | |
m_next_restart_num = 0; | |
m_max_mcus_per_row = 0; | |
m_max_blocks_per_mcu = 0; | |
m_max_mcus_per_col = 0; | |
memset(m_last_dc_val, 0, sizeof(m_last_dc_val)); | |
m_pMCU_coefficients = NULL; | |
m_pSample_buf = NULL; | |
m_total_bytes_read = 0; | |
m_pScan_line_0 = NULL; | |
m_pScan_line_1 = NULL; | |
// Ready the input buffer. | |
prep_in_buffer(); | |
// Prime the bit buffer. | |
m_bits_left = 16; | |
m_bit_buf = 0; | |
get_bits(16); | |
get_bits(16); | |
for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++) | |
m_mcu_block_max_zag[i] = 64; | |
} | |
// Create a few tables that allow us to quickly convert YCbCr to RGB. | |
void jpeg_decoder::create_look_ups() | |
{ | |
for (int i = 0; i <= 255; i++) | |
{ | |
int k = i - 128; | |
m_crr[i] = ( FIX(1.40200f) * k + ONE_HALF) >> SCALEBITS; | |
m_cbb[i] = ( FIX(1.77200f) * k + ONE_HALF) >> SCALEBITS; | |
m_crg[i] = (-FIX(0.71414f)) * k; | |
m_cbg[i] = (-FIX(0.34414f)) * k + ONE_HALF; | |
} | |
} | |
// This method throws back into the stream any bytes that where read | |
// into the bit buffer during initial marker scanning. | |
void jpeg_decoder::fix_in_buffer() | |
{ | |
// In case any 0xFF's where pulled into the buffer during marker scanning. | |
JPGD_ASSERT((m_bits_left & 7) == 0); | |
if (m_bits_left == 16) | |
stuff_char( (uint8)(m_bit_buf & 0xFF)); | |
if (m_bits_left >= 8) | |
stuff_char( (uint8)((m_bit_buf >> 8) & 0xFF)); | |
stuff_char((uint8)((m_bit_buf >> 16) & 0xFF)); | |
stuff_char((uint8)((m_bit_buf >> 24) & 0xFF)); | |
m_bits_left = 16; | |
get_bits_no_markers(16); | |
get_bits_no_markers(16); | |
} | |
void jpeg_decoder::transform_mcu(int mcu_row) | |
{ | |
jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; | |
uint8* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64; | |
for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) | |
{ | |
idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]); | |
pSrc_ptr += 64; | |
pDst_ptr += 64; | |
} | |
} | |
static const uint8 s_max_rc[64] = | |
{ | |
17, 18, 34, 50, 50, 51, 52, 52, 52, 68, 84, 84, 84, 84, 85, 86, 86, 86, 86, 86, | |
102, 118, 118, 118, 118, 118, 118, 119, 120, 120, 120, 120, 120, 120, 120, 136, | |
136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, | |
136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136 | |
}; | |
void jpeg_decoder::transform_mcu_expand(int mcu_row) | |
{ | |
jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; | |
uint8* pDst_ptr = m_pSample_buf + mcu_row * m_expanded_blocks_per_mcu * 64; | |
// Y IDCT | |
int mcu_block; | |
for (mcu_block = 0; mcu_block < m_expanded_blocks_per_component; mcu_block++) | |
{ | |
idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]); | |
pSrc_ptr += 64; | |
pDst_ptr += 64; | |
} | |
// Chroma IDCT, with upsampling | |
jpgd_block_t temp_block[64]; | |
for (int i = 0; i < 2; i++) | |
{ | |
DCT_Upsample::Matrix44 P, Q, R, S; | |
JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] >= 1); | |
JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] <= 64); | |
switch (s_max_rc[m_mcu_block_max_zag[mcu_block++] - 1]) | |
{ | |
case 1*16+1: | |
DCT_Upsample::P_Q<1, 1>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<1, 1>::calc(R, S, pSrc_ptr); | |
break; | |
case 1*16+2: | |
DCT_Upsample::P_Q<1, 2>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<1, 2>::calc(R, S, pSrc_ptr); | |
break; | |
case 2*16+2: | |
DCT_Upsample::P_Q<2, 2>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<2, 2>::calc(R, S, pSrc_ptr); | |
break; | |
case 3*16+2: | |
DCT_Upsample::P_Q<3, 2>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<3, 2>::calc(R, S, pSrc_ptr); | |
break; | |
case 3*16+3: | |
DCT_Upsample::P_Q<3, 3>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<3, 3>::calc(R, S, pSrc_ptr); | |
break; | |
case 3*16+4: | |
DCT_Upsample::P_Q<3, 4>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<3, 4>::calc(R, S, pSrc_ptr); | |
break; | |
case 4*16+4: | |
DCT_Upsample::P_Q<4, 4>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<4, 4>::calc(R, S, pSrc_ptr); | |
break; | |
case 5*16+4: | |
DCT_Upsample::P_Q<5, 4>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<5, 4>::calc(R, S, pSrc_ptr); | |
break; | |
case 5*16+5: | |
DCT_Upsample::P_Q<5, 5>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<5, 5>::calc(R, S, pSrc_ptr); | |
break; | |
case 5*16+6: | |
DCT_Upsample::P_Q<5, 6>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<5, 6>::calc(R, S, pSrc_ptr); | |
break; | |
case 6*16+6: | |
DCT_Upsample::P_Q<6, 6>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<6, 6>::calc(R, S, pSrc_ptr); | |
break; | |
case 7*16+6: | |
DCT_Upsample::P_Q<7, 6>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<7, 6>::calc(R, S, pSrc_ptr); | |
break; | |
case 7*16+7: | |
DCT_Upsample::P_Q<7, 7>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<7, 7>::calc(R, S, pSrc_ptr); | |
break; | |
case 7*16+8: | |
DCT_Upsample::P_Q<7, 8>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<7, 8>::calc(R, S, pSrc_ptr); | |
break; | |
case 8*16+8: | |
DCT_Upsample::P_Q<8, 8>::calc(P, Q, pSrc_ptr); | |
DCT_Upsample::R_S<8, 8>::calc(R, S, pSrc_ptr); | |
break; | |
default: | |
JPGD_ASSERT(false); | |
} | |
DCT_Upsample::Matrix44 a(P + Q); P -= Q; | |
DCT_Upsample::Matrix44& b = P; | |
DCT_Upsample::Matrix44 c(R + S); R -= S; | |
DCT_Upsample::Matrix44& d = R; | |
DCT_Upsample::Matrix44::add_and_store(temp_block, a, c); | |
idct_4x4(temp_block, pDst_ptr); | |
pDst_ptr += 64; | |
DCT_Upsample::Matrix44::sub_and_store(temp_block, a, c); | |
idct_4x4(temp_block, pDst_ptr); | |
pDst_ptr += 64; | |
DCT_Upsample::Matrix44::add_and_store(temp_block, b, d); | |
idct_4x4(temp_block, pDst_ptr); | |
pDst_ptr += 64; | |
DCT_Upsample::Matrix44::sub_and_store(temp_block, b, d); | |
idct_4x4(temp_block, pDst_ptr); | |
pDst_ptr += 64; | |
pSrc_ptr += 64; | |
} | |
} | |
// Loads and dequantizes the next row of (already decoded) coefficients. | |
// Progressive images only. | |
void jpeg_decoder::load_next_row() | |
{ | |
int i; | |
jpgd_block_t *p; | |
jpgd_quant_t *q; | |
int mcu_row, mcu_block, row_block = 0; | |
int component_num, component_id; | |
int block_x_mcu[JPGD_MAX_COMPONENTS]; | |
memset(block_x_mcu, 0, JPGD_MAX_COMPONENTS * sizeof(int)); | |
for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) | |
{ | |
int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; | |
for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) | |
{ | |
component_id = m_mcu_org[mcu_block]; | |
q = m_quant[m_comp_quant[component_id]]; | |
p = m_pMCU_coefficients + 64 * mcu_block; | |
jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); | |
jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); | |
p[0] = pDC[0]; | |
memcpy(&p[1], &pAC[1], 63 * sizeof(jpgd_block_t)); | |
for (i = 63; i > 0; i--) | |
if (p[g_ZAG[i]]) | |
break; | |
m_mcu_block_max_zag[mcu_block] = i + 1; | |
for ( ; i >= 0; i--) | |
if (p[g_ZAG[i]]) | |
p[g_ZAG[i]] = static_cast<jpgd_block_t>(p[g_ZAG[i]] * q[i]); | |
row_block++; | |
if (m_comps_in_scan == 1) | |
block_x_mcu[component_id]++; | |
else | |
{ | |
if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) | |
{ | |
block_x_mcu_ofs = 0; | |
if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) | |
{ | |
block_y_mcu_ofs = 0; | |
block_x_mcu[component_id] += m_comp_h_samp[component_id]; | |
} | |
} | |
} | |
} | |
if (m_freq_domain_chroma_upsample) | |
transform_mcu_expand(mcu_row); | |
else | |
transform_mcu(mcu_row); | |
} | |
if (m_comps_in_scan == 1) | |
m_block_y_mcu[m_comp_list[0]]++; | |
else | |
{ | |
for (component_num = 0; component_num < m_comps_in_scan; component_num++) | |
{ | |
component_id = m_comp_list[component_num]; | |
m_block_y_mcu[component_id] += m_comp_v_samp[component_id]; | |
} | |
} | |
} | |
// Restart interval processing. | |
void jpeg_decoder::process_restart() | |
{ | |
int i; | |
int c = 0; | |
// Align to a byte boundry | |
// FIXME: Is this really necessary? get_bits_no_markers() never reads in markers! | |
//get_bits_no_markers(m_bits_left & 7); | |
// Let's scan a little bit to find the marker, but not _too_ far. | |
// 1536 is a "fudge factor" that determines how much to scan. | |
for (i = 1536; i > 0; i--) | |
if (get_char() == 0xFF) | |
break; | |
if (i == 0) | |
stop_decoding(JPGD_BAD_RESTART_MARKER); | |
for ( ; i > 0; i--) | |
if ((c = get_char()) != 0xFF) | |
break; | |
if (i == 0) | |
stop_decoding(JPGD_BAD_RESTART_MARKER); | |
// Is it the expected marker? If not, something bad happened. | |
if (c != (m_next_restart_num + M_RST0)) | |
stop_decoding(JPGD_BAD_RESTART_MARKER); | |
// Reset each component's DC prediction values. | |
memset(&m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); | |
m_eob_run = 0; | |
m_restarts_left = m_restart_interval; | |
m_next_restart_num = (m_next_restart_num + 1) & 7; | |
// Get the bit buffer going again... | |
m_bits_left = 16; | |
get_bits_no_markers(16); | |
get_bits_no_markers(16); | |
} | |
static inline int dequantize_ac(int c, int q) { c *= q; return c; } | |
// Decodes and dequantizes the next row of coefficients. | |
void jpeg_decoder::decode_next_row() | |
{ | |
int row_block = 0; | |
for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) | |
{ | |
if ((m_restart_interval) && (m_restarts_left == 0)) | |
process_restart(); | |
jpgd_block_t* p = m_pMCU_coefficients; | |
for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64) | |
{ | |
int component_id = m_mcu_org[mcu_block]; | |
jpgd_quant_t* q = m_quant[m_comp_quant[component_id]]; | |
int r, s; | |
s = huff_decode(m_pHuff_tabs[m_comp_dc_tab[component_id]], r); | |
s = HUFF_EXTEND(r, s); | |
m_last_dc_val[component_id] = (s += m_last_dc_val[component_id]); | |
p[0] = static_cast<jpgd_block_t>(s * q[0]); | |
int prev_num_set = m_mcu_block_max_zag[mcu_block]; | |
huff_tables *pH = m_pHuff_tabs[m_comp_ac_tab[component_id]]; | |
int k; | |
for (k = 1; k < 64; k++) | |
{ | |
int extra_bits; | |
s = huff_decode(pH, extra_bits); | |
r = s >> 4; | |
s &= 15; | |
if (s) | |
{ | |
if (r) | |
{ | |
if ((k + r) > 63) | |
stop_decoding(JPGD_DECODE_ERROR); | |
if (k < prev_num_set) | |
{ | |
int n = JPGD_MIN(r, prev_num_set - k); | |
int kt = k; | |
while (n--) | |
p[g_ZAG[kt++]] = 0; | |
} | |
k += r; | |
} | |
s = HUFF_EXTEND(extra_bits, s); | |
JPGD_ASSERT(k < 64); | |
p[g_ZAG[k]] = static_cast<jpgd_block_t>(dequantize_ac(s, q[k])); //s * q[k]; | |
} | |
else | |
{ | |
if (r == 15) | |
{ | |
if ((k + 16) > 64) | |
stop_decoding(JPGD_DECODE_ERROR); | |
if (k < prev_num_set) | |
{ | |
int n = JPGD_MIN(16, prev_num_set - k); | |
int kt = k; | |
while (n--) | |
{ | |
JPGD_ASSERT(kt <= 63); | |
p[g_ZAG[kt++]] = 0; | |
} | |
} | |
k += 16 - 1; // - 1 because the loop counter is k | |
// BEGIN EPIC MOD | |
JPGD_ASSERT(k < 64 && p[g_ZAG[k]] == 0); | |
// END EPIC MOD | |
} | |
else | |
break; | |
} | |
} | |
if (k < prev_num_set) | |
{ | |
int kt = k; | |
while (kt < prev_num_set) | |
p[g_ZAG[kt++]] = 0; | |
} | |
m_mcu_block_max_zag[mcu_block] = k; | |
row_block++; | |
} | |
if (m_freq_domain_chroma_upsample) | |
transform_mcu_expand(mcu_row); | |
else | |
transform_mcu(mcu_row); | |
m_restarts_left--; | |
} | |
} | |
// YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB | |
void jpeg_decoder::H1V1Convert() | |
{ | |
int row = m_max_mcu_y_size - m_mcu_lines_left; | |
uint8 *d = m_pScan_line_0; | |
uint8 *s = m_pSample_buf + row * 8; | |
for (int i = m_max_mcus_per_row; i > 0; i--) | |
{ | |
for (int j = 0; j < 8; j++) | |
{ | |
int y = s[j]; | |
int cb = s[64+j]; | |
int cr = s[128+j]; | |
if (jpg_format == ERGBFormatJPG::BGRA) | |
{ | |
d[0] = clamp(y + m_cbb[cb]); | |
d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); | |
d[2] = clamp(y + m_crr[cr]); | |
d[3] = 255; | |
} | |
else | |
{ | |
d[0] = clamp(y + m_crr[cr]); | |
d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); | |
d[2] = clamp(y + m_cbb[cb]); | |
d[3] = 255; | |
} | |
d += 4; | |
} | |
s += 64*3; | |
} | |
} | |
// YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB | |
void jpeg_decoder::H2V1Convert() | |
{ | |
int row = m_max_mcu_y_size - m_mcu_lines_left; | |
uint8 *d0 = m_pScan_line_0; | |
uint8 *y = m_pSample_buf + row * 8; | |
uint8 *c = m_pSample_buf + 2*64 + row * 8; | |
for (int i = m_max_mcus_per_row; i > 0; i--) | |
{ | |
for (int l = 0; l < 2; l++) | |
{ | |
for (int j = 0; j < 4; j++) | |
{ | |
int cb = c[0]; | |
int cr = c[64]; | |
int rc = m_crr[cr]; | |
int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); | |
int bc = m_cbb[cb]; | |
int yy = y[j<<1]; | |
if (jpg_format == ERGBFormatJPG::BGRA) | |
{ | |
d0[0] = clamp(yy+bc); | |
d0[1] = clamp(yy+gc); | |
d0[2] = clamp(yy+rc); | |
d0[3] = 255; | |
yy = y[(j<<1)+1]; | |
d0[4] = clamp(yy+bc); | |
d0[5] = clamp(yy+gc); | |
d0[6] = clamp(yy+rc); | |
d0[7] = 255; | |
} | |
else | |
{ | |
d0[0] = clamp(yy+rc); | |
d0[1] = clamp(yy+gc); | |
d0[2] = clamp(yy+bc); | |
d0[3] = 255; | |
yy = y[(j<<1)+1]; | |
d0[4] = clamp(yy+rc); | |
d0[5] = clamp(yy+gc); | |
d0[6] = clamp(yy+bc); | |
d0[7] = 255; | |
} | |
d0 += 8; | |
c++; | |
} | |
y += 64; | |
} | |
y += 64*4 - 64*2; | |
c += 64*4 - 8; | |
} | |
} | |
// YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB | |
void jpeg_decoder::H1V2Convert() | |
{ | |
int row = m_max_mcu_y_size - m_mcu_lines_left; | |
uint8 *d0 = m_pScan_line_0; | |
uint8 *d1 = m_pScan_line_1; | |
uint8 *y; | |
uint8 *c; | |
if (row < 8) | |
y = m_pSample_buf + row * 8; | |
else | |
y = m_pSample_buf + 64*1 + (row & 7) * 8; | |
c = m_pSample_buf + 64*2 + (row >> 1) * 8; | |
for (int i = m_max_mcus_per_row; i > 0; i--) | |
{ | |
for (int j = 0; j < 8; j++) | |
{ | |
int cb = c[0+j]; | |
int cr = c[64+j]; | |
int rc = m_crr[cr]; | |
int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); | |
int bc = m_cbb[cb]; | |
int yy = y[j]; | |
if (jpg_format == ERGBFormatJPG::BGRA) | |
{ | |
d0[0] = clamp(yy+bc); | |
d0[1] = clamp(yy+gc); | |
d0[2] = clamp(yy+rc); | |
d0[3] = 255; | |
yy = y[8+j]; | |
d1[0] = clamp(yy+bc); | |
d1[1] = clamp(yy+gc); | |
d1[2] = clamp(yy+rc); | |
d1[3] = 255; | |
} | |
else | |
{ | |
d0[0] = clamp(yy+rc); | |
d0[1] = clamp(yy+gc); | |
d0[2] = clamp(yy+bc); | |
d0[3] = 255; | |
yy = y[8+j]; | |
d1[0] = clamp(yy+rc); | |
d1[1] = clamp(yy+gc); | |
d1[2] = clamp(yy+bc); | |
d1[3] = 255; | |
} | |
d0 += 4; | |
d1 += 4; | |
} | |
y += 64*4; | |
c += 64*4; | |
} | |
} | |
// YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB | |
void jpeg_decoder::H2V2Convert() | |
{ | |
int row = m_max_mcu_y_size - m_mcu_lines_left; | |
uint8 *d0 = m_pScan_line_0; | |
uint8 *d1 = m_pScan_line_1; | |
uint8 *y; | |
uint8 *c; | |
if (row < 8) | |
y = m_pSample_buf + row * 8; | |
else | |
y = m_pSample_buf + 64*2 + (row & 7) * 8; | |
c = m_pSample_buf + 64*4 + (row >> 1) * 8; | |
for (int i = m_max_mcus_per_row; i > 0; i--) | |
{ | |
for (int l = 0; l < 2; l++) | |
{ | |
for (int j = 0; j < 8; j += 2) | |
{ | |
int cb = c[0]; | |
int cr = c[64]; | |
int rc = m_crr[cr]; | |
int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); | |
int bc = m_cbb[cb]; | |
int yy = y[j]; | |
if (jpg_format == ERGBFormatJPG::BGRA) | |
{ | |
d0[0] = clamp(yy+bc); | |
d0[1] = clamp(yy+gc); | |
d0[2] = clamp(yy+rc); | |
d0[3] = 255; | |
yy = y[j+1]; | |
d0[4] = clamp(yy+bc); | |
d0[5] = clamp(yy+gc); | |
d0[6] = clamp(yy+rc); | |
d0[7] = 255; | |
yy = y[j+8]; | |
d1[0] = clamp(yy+bc); | |
d1[1] = clamp(yy+gc); | |
d1[2] = clamp(yy+rc); | |
d1[3] = 255; | |
yy = y[j+8+1]; | |
d1[4] = clamp(yy+bc); | |
d1[5] = clamp(yy+gc); | |
d1[6] = clamp(yy+rc); | |
d1[7] = 255; | |
} | |
else | |
{ | |
d0[0] = clamp(yy+rc); | |
d0[1] = clamp(yy+gc); | |
d0[2] = clamp(yy+bc); | |
d0[3] = 255; | |
yy = y[j+1]; | |
d0[4] = clamp(yy+rc); | |
d0[5] = clamp(yy+gc); | |
d0[6] = clamp(yy+bc); | |
d0[7] = 255; | |
yy = y[j+8]; | |
d1[0] = clamp(yy+rc); | |
d1[1] = clamp(yy+gc); | |
d1[2] = clamp(yy+bc); | |
d1[3] = 255; | |
yy = y[j+8+1]; | |
d1[4] = clamp(yy+rc); | |
d1[5] = clamp(yy+gc); | |
d1[6] = clamp(yy+bc); | |
d1[7] = 255; | |
} | |
d0 += 8; | |
d1 += 8; | |
c++; | |
} | |
y += 64; | |
} | |
y += 64*6 - 64*2; | |
c += 64*6 - 8; | |
} | |
} | |
// Y (1 block per MCU) to 8-bit grayscale | |
void jpeg_decoder::gray_convert() | |
{ | |
int row = m_max_mcu_y_size - m_mcu_lines_left; | |
uint8 *d = m_pScan_line_0; | |
uint8 *s = m_pSample_buf + row * 8; | |
for (int i = m_max_mcus_per_row; i > 0; i--) | |
{ | |
*(uint *)d = *(uint *)s; | |
*(uint *)(&d[4]) = *(uint *)(&s[4]); | |
s += 64; | |
d += 8; | |
} | |
} | |
void jpeg_decoder::expanded_convert() | |
{ | |
int row = m_max_mcu_y_size - m_mcu_lines_left; | |
uint8* Py = m_pSample_buf + (row / 8) * 64 * m_comp_h_samp[0] + (row & 7) * 8; | |
uint8* d = m_pScan_line_0; | |
for (int i = m_max_mcus_per_row; i > 0; i--) | |
{ | |
for (int k = 0; k < m_max_mcu_x_size; k += 8) | |
{ | |
const int Y_ofs = k * 8; | |
const int Cb_ofs = Y_ofs + 64 * m_expanded_blocks_per_component; | |
const int Cr_ofs = Y_ofs + 64 * m_expanded_blocks_per_component * 2; | |
for (int j = 0; j < 8; j++) | |
{ | |
int y = Py[Y_ofs + j]; | |
int cb = Py[Cb_ofs + j]; | |
int cr = Py[Cr_ofs + j]; | |
if (jpg_format == ERGBFormatJPG::BGRA) | |
{ | |
d[0] = clamp(y + m_cbb[cb]); | |
d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); | |
d[2] = clamp(y + m_crr[cr]); | |
d[3] = 255; | |
} | |
else | |
{ | |
d[0] = clamp(y + m_crr[cr]); | |
d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); | |
d[2] = clamp(y + m_cbb[cb]); | |
d[3] = 255; | |
} | |
d += 4; | |
} | |
} | |
Py += 64 * m_expanded_blocks_per_mcu; | |
} | |
} | |
// Find end of image (EOI) marker, so we can return to the user the exact size of the input stream. | |
void jpeg_decoder::find_eoi() | |
{ | |
if (!m_progressive_flag) | |
{ | |
// Attempt to read the EOI marker. | |
//get_bits_no_markers(m_bits_left & 7); | |
// Prime the bit buffer | |
m_bits_left = 16; | |
get_bits(16); | |
get_bits(16); | |
// The next marker _should_ be EOI | |
process_markers(); | |
} | |
m_total_bytes_read -= m_in_buf_left; | |
} | |
int jpeg_decoder::decode(const void** pScan_line, uint* pScan_line_len) | |
{ | |
if ((m_error_code) || (!m_ready_flag)) | |
return JPGD_FAILED; | |
if (m_total_lines_left == 0) | |
return JPGD_DONE; | |
if (m_mcu_lines_left == 0) | |
{ | |
if (setjmp(m_jmp_state)) | |
return JPGD_FAILED; | |
if (m_progressive_flag) | |
load_next_row(); | |
else | |
decode_next_row(); | |
// Find the EOI marker if that was the last row. | |
if (m_total_lines_left <= m_max_mcu_y_size) | |
find_eoi(); | |
m_mcu_lines_left = m_max_mcu_y_size; | |
} | |
if (m_freq_domain_chroma_upsample) | |
{ | |
expanded_convert(); | |
*pScan_line = m_pScan_line_0; | |
} | |
else | |
{ | |
switch (m_scan_type) | |
{ | |
case JPGD_YH2V2: | |
{ | |
if ((m_mcu_lines_left & 1) == 0) | |
{ | |
H2V2Convert(); | |
*pScan_line = m_pScan_line_0; | |
} | |
else | |
*pScan_line = m_pScan_line_1; | |
break; | |
} | |
case JPGD_YH2V1: | |
{ | |
H2V1Convert(); | |
*pScan_line = m_pScan_line_0; | |
break; | |
} | |
case JPGD_YH1V2: | |
{ | |
if ((m_mcu_lines_left & 1) == 0) | |
{ | |
H1V2Convert(); | |
*pScan_line = m_pScan_line_0; | |
} | |
else | |
*pScan_line = m_pScan_line_1; | |
break; | |
} | |
case JPGD_YH1V1: | |
{ | |
H1V1Convert(); | |
*pScan_line = m_pScan_line_0; | |
break; | |
} | |
case JPGD_GRAYSCALE: | |
{ | |
gray_convert(); | |
*pScan_line = m_pScan_line_0; | |
break; | |
} | |
} | |
} | |
*pScan_line_len = m_real_dest_bytes_per_scan_line; | |
m_mcu_lines_left--; | |
m_total_lines_left--; | |
return JPGD_SUCCESS; | |
} | |
// Creates the tables needed for efficient Huffman decoding. | |
void jpeg_decoder::make_huff_table(int index, huff_tables *pH) | |
{ | |
int p, i, l, si; | |
uint8 huffsize[257]; | |
uint huffcode[257]; | |
uint code; | |
uint subtree; | |
int code_size; | |
int lastp; | |
int nextfreeentry; | |
int currententry; | |
pH->ac_table = m_huff_ac[index] != 0; | |
p = 0; | |
for (l = 1; l <= 16; l++) | |
{ | |
for (i = 1; i <= m_huff_num[index][l]; i++) | |
huffsize[p++] = static_cast<uint8>(l); | |
} | |
huffsize[p] = 0; | |
lastp = p; | |
code = 0; | |
si = huffsize[0]; | |
p = 0; | |
while (huffsize[p]) | |
{ | |
while (huffsize[p] == si) | |
{ | |
huffcode[p++] = code; | |
code++; | |
} | |
code <<= 1; | |
si++; | |
} | |
memset(pH->look_up, 0, sizeof(pH->look_up)); | |
memset(pH->look_up2, 0, sizeof(pH->look_up2)); | |
memset(pH->tree, 0, sizeof(pH->tree)); | |
memset(pH->code_size, 0, sizeof(pH->code_size)); | |
nextfreeentry = -1; | |
p = 0; | |
while (p < lastp) | |
{ | |
i = m_huff_val[index][p]; | |
code = huffcode[p]; | |
code_size = huffsize[p]; | |
pH->code_size[i] = static_cast<uint8>(code_size); | |
if (code_size <= 8) | |
{ | |
code <<= (8 - code_size); | |
for (l = 1 << (8 - code_size); l > 0; l--) | |
{ | |
JPGD_ASSERT(i < 256); | |
pH->look_up[code] = i; | |
bool has_extrabits = false; | |
int extra_bits = 0; | |
int num_extra_bits = i & 15; | |
int bits_to_fetch = code_size; | |
if (num_extra_bits) | |
{ | |
int total_codesize = code_size + num_extra_bits; | |
if (total_codesize <= 8) | |
{ | |
has_extrabits = true; | |
extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize)); | |
JPGD_ASSERT(extra_bits <= 0x7FFF); | |
bits_to_fetch += num_extra_bits; | |
} | |
} | |
if (!has_extrabits) | |
pH->look_up2[code] = i | (bits_to_fetch << 8); | |
else | |
pH->look_up2[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8); | |
code++; | |
} | |
} | |
else | |
{ | |
subtree = (code >> (code_size - 8)) & 0xFF; | |
currententry = pH->look_up[subtree]; | |
if (currententry == 0) | |
{ | |
pH->look_up[subtree] = currententry = nextfreeentry; | |
pH->look_up2[subtree] = currententry = nextfreeentry; | |
nextfreeentry -= 2; | |
} | |
code <<= (16 - (code_size - 8)); | |
for (l = code_size; l > 9; l--) | |
{ | |
if ((code & 0x8000) == 0) | |
currententry--; | |
if (pH->tree[-currententry - 1] == 0) | |
{ | |
pH->tree[-currententry - 1] = nextfreeentry; | |
currententry = nextfreeentry; | |
nextfreeentry -= 2; | |
} | |
else | |
currententry = pH->tree[-currententry - 1]; | |
code <<= 1; | |
} | |
if ((code & 0x8000) == 0) | |
currententry--; | |
pH->tree[-currententry - 1] = i; | |
} | |
p++; | |
} | |
} | |
// Verifies the quantization tables needed for this scan are available. | |
void jpeg_decoder::check_quant_tables() | |
{ | |
for (int i = 0; i < m_comps_in_scan; i++) | |
if (m_quant[m_comp_quant[m_comp_list[i]]] == NULL) | |
stop_decoding(JPGD_UNDEFINED_QUANT_TABLE); | |
} | |
// Verifies that all the Huffman tables needed for this scan are available. | |
void jpeg_decoder::check_huff_tables() | |
{ | |
for (int i = 0; i < m_comps_in_scan; i++) | |
{ | |
if ((m_spectral_start == 0) && (m_huff_num[m_comp_dc_tab[m_comp_list[i]]] == NULL)) | |
stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); | |
if ((m_spectral_end > 0) && (m_huff_num[m_comp_ac_tab[m_comp_list[i]]] == NULL)) | |
stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); | |
} | |
for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++) | |
if (m_huff_num[i]) | |
{ | |
if (!m_pHuff_tabs[i]) | |
m_pHuff_tabs[i] = (huff_tables *)alloc(sizeof(huff_tables)); | |
make_huff_table(i, m_pHuff_tabs[i]); | |
} | |
} | |
// Determines the component order inside each MCU. | |
// Also calcs how many MCU's are on each row, etc. | |
void jpeg_decoder::calc_mcu_block_order() | |
{ | |
int component_num, component_id; | |
int max_h_samp = 0, max_v_samp = 0; | |
for (component_id = 0; component_id < m_comps_in_frame; component_id++) | |
{ | |
if (m_comp_h_samp[component_id] > max_h_samp) | |
max_h_samp = m_comp_h_samp[component_id]; | |
if (m_comp_v_samp[component_id] > max_v_samp) | |
max_v_samp = m_comp_v_samp[component_id]; | |
} | |
for (component_id = 0; component_id < m_comps_in_frame; component_id++) | |
{ | |
m_comp_h_blocks[component_id] = ((((m_image_x_size * m_comp_h_samp[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8; | |
m_comp_v_blocks[component_id] = ((((m_image_y_size * m_comp_v_samp[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8; | |
} | |
if (m_comps_in_scan == 1) | |
{ | |
m_mcus_per_row = m_comp_h_blocks[m_comp_list[0]]; | |
m_mcus_per_col = m_comp_v_blocks[m_comp_list[0]]; | |
} | |
else | |
{ | |
m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp; | |
m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp; | |
} | |
if (m_comps_in_scan == 1) | |
{ | |
m_mcu_org[0] = m_comp_list[0]; | |
m_blocks_per_mcu = 1; | |
} | |
else | |
{ | |
m_blocks_per_mcu = 0; | |
for (component_num = 0; component_num < m_comps_in_scan; component_num++) | |
{ | |
int num_blocks; | |
component_id = m_comp_list[component_num]; | |
num_blocks = m_comp_h_samp[component_id] * m_comp_v_samp[component_id]; | |
while (num_blocks--) | |
m_mcu_org[m_blocks_per_mcu++] = component_id; | |
} | |
} | |
} | |
// Starts a new scan. | |
int jpeg_decoder::init_scan() | |
{ | |
if (!locate_sos_marker()) | |
return JPGD_FALSE; | |
calc_mcu_block_order(); | |
check_huff_tables(); | |
check_quant_tables(); | |
memset(m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); | |
m_eob_run = 0; | |
if (m_restart_interval) | |
{ | |
m_restarts_left = m_restart_interval; | |
m_next_restart_num = 0; | |
} | |
fix_in_buffer(); | |
return JPGD_TRUE; | |
} | |
// Starts a frame. Determines if the number of components or sampling factors | |
// are supported. | |
void jpeg_decoder::init_frame() | |
{ | |
int i; | |
if (m_comps_in_frame == 1) | |
{ | |
if ((m_comp_h_samp[0] != 1) || (m_comp_v_samp[0] != 1)) | |
stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); | |
m_scan_type = JPGD_GRAYSCALE; | |
m_max_blocks_per_mcu = 1; | |
m_max_mcu_x_size = 8; | |
m_max_mcu_y_size = 8; | |
} | |
else if (m_comps_in_frame == 3) | |
{ | |
if ( ((m_comp_h_samp[1] != 1) || (m_comp_v_samp[1] != 1)) || | |
((m_comp_h_samp[2] != 1) || (m_comp_v_samp[2] != 1)) ) | |
stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); | |
if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) | |
{ | |
m_scan_type = JPGD_YH1V1; | |
m_max_blocks_per_mcu = 3; | |
m_max_mcu_x_size = 8; | |
m_max_mcu_y_size = 8; | |
} | |
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) | |
{ | |
m_scan_type = JPGD_YH2V1; | |
m_max_blocks_per_mcu = 4; | |
m_max_mcu_x_size = 16; | |
m_max_mcu_y_size = 8; | |
} | |
else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 2)) | |
{ | |
m_scan_type = JPGD_YH1V2; | |
m_max_blocks_per_mcu = 4; | |
m_max_mcu_x_size = 8; | |
m_max_mcu_y_size = 16; | |
} | |
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) | |
{ | |
m_scan_type = JPGD_YH2V2; | |
m_max_blocks_per_mcu = 6; | |
m_max_mcu_x_size = 16; | |
m_max_mcu_y_size = 16; | |
} | |
else | |
stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); | |
} | |
else | |
stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); | |
m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size; | |
m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size; | |
// These values are for the *destination* pixels: after conversion. | |
if (m_scan_type == JPGD_GRAYSCALE) | |
m_dest_bytes_per_pixel = 1; | |
else | |
m_dest_bytes_per_pixel = 4; | |
m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel; | |
m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel); | |
// Initialize two scan line buffers. | |
m_pScan_line_0 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true); | |
if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2)) | |
m_pScan_line_1 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true); | |
m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu; | |
// Should never happen | |
if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW) | |
stop_decoding(JPGD_ASSERTION_ERROR); | |
// Allocate the coefficient buffer, enough for one MCU | |
m_pMCU_coefficients = (jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * sizeof(jpgd_block_t)); | |
for (i = 0; i < m_max_blocks_per_mcu; i++) | |
m_mcu_block_max_zag[i] = 64; | |
m_expanded_blocks_per_component = m_comp_h_samp[0] * m_comp_v_samp[0]; | |
m_expanded_blocks_per_mcu = m_expanded_blocks_per_component * m_comps_in_frame; | |
m_expanded_blocks_per_row = m_max_mcus_per_row * m_expanded_blocks_per_mcu; | |
// Freq. domain chroma upsampling is only supported for H2V2 subsampling factor. | |
// BEGIN EPIC MOD | |
m_freq_domain_chroma_upsample = (m_expanded_blocks_per_mcu == 4*3); | |
m_freq_domain_chroma_upsample = 0; | |
// END EPIC MOD | |
if (m_freq_domain_chroma_upsample) | |
m_pSample_buf = (uint8 *)alloc(m_expanded_blocks_per_row * 64); | |
else | |
m_pSample_buf = (uint8 *)alloc(m_max_blocks_per_row * 64); | |
m_total_lines_left = m_image_y_size; | |
m_mcu_lines_left = 0; | |
create_look_ups(); | |
} | |
// The coeff_buf series of methods originally stored the coefficients | |
// into a "virtual" file which was located in EMS, XMS, or a disk file. A cache | |
// was used to make this process more efficient. Now, we can store the entire | |
// thing in RAM. | |
jpeg_decoder::coeff_buf* jpeg_decoder::coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y) | |
{ | |
coeff_buf* cb = (coeff_buf*)alloc(sizeof(coeff_buf)); | |
cb->block_num_x = block_num_x; | |
cb->block_num_y = block_num_y; | |
cb->block_len_x = block_len_x; | |
cb->block_len_y = block_len_y; | |
cb->block_size = (block_len_x * block_len_y) * sizeof(jpgd_block_t); | |
cb->pData = (uint8 *)alloc(cb->block_size * block_num_x * block_num_y, true); | |
return cb; | |
} | |
inline jpgd_block_t *jpeg_decoder::coeff_buf_getp(coeff_buf *cb, int block_x, int block_y) | |
{ | |
JPGD_ASSERT((block_x < cb->block_num_x) && (block_y < cb->block_num_y)); | |
return (jpgd_block_t *)(cb->pData + block_x * cb->block_size + block_y * (cb->block_size * cb->block_num_x)); | |
} | |
// The following methods decode the various types of m_blocks encountered | |
// in progressively encoded images. | |
void jpeg_decoder::decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y) | |
{ | |
int s, r; | |
jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); | |
if ((s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_dc_tab[component_id]])) != 0) | |
{ | |
r = pD->get_bits_no_markers(s); | |
s = HUFF_EXTEND(r, s); | |
} | |
pD->m_last_dc_val[component_id] = (s += pD->m_last_dc_val[component_id]); | |
p[0] = static_cast<jpgd_block_t>(s << pD->m_successive_low); | |
} | |
void jpeg_decoder::decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y) | |
{ | |
if (pD->get_bits_no_markers(1)) | |
{ | |
jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); | |
p[0] |= (1 << pD->m_successive_low); | |
} | |
} | |
void jpeg_decoder::decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y) | |
{ | |
int k, s, r; | |
if (pD->m_eob_run) | |
{ | |
pD->m_eob_run--; | |
return; | |
} | |
jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); | |
for (k = pD->m_spectral_start; k <= pD->m_spectral_end; k++) | |
{ | |
s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]); | |
r = s >> 4; | |
s &= 15; | |
if (s) | |
{ | |
if ((k += r) > 63) | |
pD->stop_decoding(JPGD_DECODE_ERROR); | |
r = pD->get_bits_no_markers(s); | |
s = HUFF_EXTEND(r, s); | |
p[g_ZAG[k]] = static_cast<jpgd_block_t>(s << pD->m_successive_low); | |
} | |
else | |
{ | |
if (r == 15) | |
{ | |
if ((k += 15) > 63) | |
pD->stop_decoding(JPGD_DECODE_ERROR); | |
} | |
else | |
{ | |
pD->m_eob_run = 1 << r; | |
if (r) | |
pD->m_eob_run += pD->get_bits_no_markers(r); | |
pD->m_eob_run--; | |
break; | |
} | |
} | |
} | |
} | |
void jpeg_decoder::decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y) | |
{ | |
int s, k, r; | |
int p1 = 1 << pD->m_successive_low; | |
int m1 = (-1) << pD->m_successive_low; | |
jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); | |
k = pD->m_spectral_start; | |
if (pD->m_eob_run == 0) | |
{ | |
for ( ; k <= pD->m_spectral_end; k++) | |
{ | |
s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]); | |
r = s >> 4; | |
s &= 15; | |
if (s) | |
{ | |
if (s != 1) | |
pD->stop_decoding(JPGD_DECODE_ERROR); | |
if (pD->get_bits_no_markers(1)) | |
s = p1; | |
else | |
s = m1; | |
} | |
else | |
{ | |
if (r != 15) | |
{ | |
pD->m_eob_run = 1 << r; | |
if (r) | |
pD->m_eob_run += pD->get_bits_no_markers(r); | |
break; | |
} | |
} | |
do | |
{ | |
// BEGIN EPIC MOD | |
JPGD_ASSERT(k < 64); | |
// END EPIC MOD | |
jpgd_block_t *this_coef = p + g_ZAG[k]; | |
if (*this_coef != 0) | |
{ | |
if (pD->get_bits_no_markers(1)) | |
{ | |
if ((*this_coef & p1) == 0) | |
{ | |
if (*this_coef >= 0) | |
*this_coef = static_cast<jpgd_block_t>(*this_coef + p1); | |
else | |
*this_coef = static_cast<jpgd_block_t>(*this_coef + m1); | |
} | |
} | |
} | |
else | |
{ | |
if (--r < 0) | |
break; | |
} | |
k++; | |
} while (k <= pD->m_spectral_end); | |
if ((s) && (k < 64)) | |
{ | |
p[g_ZAG[k]] = static_cast<jpgd_block_t>(s); | |
} | |
} | |
} | |
if (pD->m_eob_run > 0) | |
{ | |
for ( ; k <= pD->m_spectral_end; k++) | |
{ | |
// BEGIN EPIC MOD | |
JPGD_ASSERT(k < 64); | |
// END EPIC MOD | |
jpgd_block_t *this_coef = p + g_ZAG[k]; | |
if (*this_coef != 0) | |
{ | |
if (pD->get_bits_no_markers(1)) | |
{ | |
if ((*this_coef & p1) == 0) | |
{ | |
if (*this_coef >= 0) | |
*this_coef = static_cast<jpgd_block_t>(*this_coef + p1); | |
else | |
*this_coef = static_cast<jpgd_block_t>(*this_coef + m1); | |
} | |
} | |
} | |
} | |
pD->m_eob_run--; | |
} | |
} | |
// Decode a scan in a progressively encoded image. | |
void jpeg_decoder::decode_scan(pDecode_block_func decode_block_func) | |
{ | |
int mcu_row, mcu_col, mcu_block; | |
int block_x_mcu[JPGD_MAX_COMPONENTS], m_block_y_mcu[JPGD_MAX_COMPONENTS]; | |
memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); | |
for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++) | |
{ | |
int component_num, component_id; | |
memset(block_x_mcu, 0, sizeof(block_x_mcu)); | |
for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) | |
{ | |
int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; | |
if ((m_restart_interval) && (m_restarts_left == 0)) | |
process_restart(); | |
for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) | |
{ | |
component_id = m_mcu_org[mcu_block]; | |
decode_block_func(this, component_id, block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); | |
if (m_comps_in_scan == 1) | |
block_x_mcu[component_id]++; | |
else | |
{ | |
if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) | |
{ | |
block_x_mcu_ofs = 0; | |
if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) | |
{ | |
block_y_mcu_ofs = 0; | |
block_x_mcu[component_id] += m_comp_h_samp[component_id]; | |
} | |
} | |
} | |
} | |
m_restarts_left--; | |
} | |
if (m_comps_in_scan == 1) | |
m_block_y_mcu[m_comp_list[0]]++; | |
else | |
{ | |
for (component_num = 0; component_num < m_comps_in_scan; component_num++) | |
{ | |
component_id = m_comp_list[component_num]; | |
m_block_y_mcu[component_id] += m_comp_v_samp[component_id]; | |
} | |
} | |
} | |
} | |
// Decode a progressively encoded image. | |
void jpeg_decoder::init_progressive() | |
{ | |
int i; | |
if (m_comps_in_frame == 4) | |
stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); | |
// Allocate the coefficient buffers. | |
for (i = 0; i < m_comps_in_frame; i++) | |
{ | |
m_dc_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 1, 1); | |
m_ac_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 8, 8); | |
} | |
for ( ; ; ) | |
{ | |
int dc_only_scan, refinement_scan; | |
pDecode_block_func decode_block_func; | |
if (!init_scan()) | |
break; | |
dc_only_scan = (m_spectral_start == 0); | |
refinement_scan = (m_successive_high != 0); | |
if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63)) | |
stop_decoding(JPGD_BAD_SOS_SPECTRAL); | |
if (dc_only_scan) | |
{ | |
if (m_spectral_end) | |
stop_decoding(JPGD_BAD_SOS_SPECTRAL); | |
} | |
else if (m_comps_in_scan != 1) /* AC scans can only contain one component */ | |
stop_decoding(JPGD_BAD_SOS_SPECTRAL); | |
if ((refinement_scan) && (m_successive_low != m_successive_high - 1)) | |
stop_decoding(JPGD_BAD_SOS_SUCCESSIVE); | |
if (dc_only_scan) | |
{ | |
if (refinement_scan) | |
decode_block_func = decode_block_dc_refine; | |
else | |
decode_block_func = decode_block_dc_first; | |
} | |
else | |
{ | |
if (refinement_scan) | |
decode_block_func = decode_block_ac_refine; | |
else | |
decode_block_func = decode_block_ac_first; | |
} | |
decode_scan(decode_block_func); | |
m_bits_left = 16; | |
get_bits(16); | |
get_bits(16); | |
} | |
m_comps_in_scan = m_comps_in_frame; | |
for (i = 0; i < m_comps_in_frame; i++) | |
m_comp_list[i] = i; | |
calc_mcu_block_order(); | |
} | |
void jpeg_decoder::init_sequential() | |
{ | |
if (!init_scan()) | |
stop_decoding(JPGD_UNEXPECTED_MARKER); | |
} | |
void jpeg_decoder::decode_start() | |
{ | |
init_frame(); | |
if (m_progressive_flag) | |
init_progressive(); | |
else | |
init_sequential(); | |
} | |
void jpeg_decoder::decode_init(jpeg_decoder_stream *pStream) | |
{ | |
init(pStream); | |
locate_sof_marker(); | |
} | |
jpeg_decoder::jpeg_decoder(jpeg_decoder_stream *pStream) | |
{ | |
if (setjmp(m_jmp_state)) | |
return; | |
decode_init(pStream); | |
} | |
int jpeg_decoder::begin_decoding() | |
{ | |
if (m_ready_flag) | |
return JPGD_SUCCESS; | |
if (m_error_code) | |
return JPGD_FAILED; | |
if (setjmp(m_jmp_state)) | |
return JPGD_FAILED; | |
decode_start(); | |
m_ready_flag = true; | |
return JPGD_SUCCESS; | |
} | |
jpeg_decoder::~jpeg_decoder() | |
{ | |
free_all_blocks(); | |
} | |
jpeg_decoder_file_stream::jpeg_decoder_file_stream() | |
{ | |
m_pFile = NULL; | |
m_eof_flag = false; | |
m_error_flag = false; | |
} | |
void jpeg_decoder_file_stream::close() | |
{ | |
if (m_pFile) | |
{ | |
fclose(m_pFile); | |
m_pFile = NULL; | |
} | |
m_eof_flag = false; | |
m_error_flag = false; | |
} | |
jpeg_decoder_file_stream::~jpeg_decoder_file_stream() | |
{ | |
close(); | |
} | |
bool jpeg_decoder_file_stream::open(const char *Pfilename) | |
{ | |
close(); | |
m_eof_flag = false; | |
m_error_flag = false; | |
m_pFile = NULL; | |
fopen_s(&m_pFile, Pfilename, "rb"); | |
m_pFile = fopen(Pfilename, "rb"); | |
return m_pFile != NULL; | |
} | |
int jpeg_decoder_file_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) | |
{ | |
if (!m_pFile) | |
return -1; | |
if (m_eof_flag) | |
{ | |
*pEOF_flag = true; | |
return 0; | |
} | |
if (m_error_flag) | |
return -1; | |
int bytes_read = static_cast<int>(fread(pBuf, 1, max_bytes_to_read, m_pFile)); | |
if (bytes_read < max_bytes_to_read) | |
{ | |
if (ferror(m_pFile)) | |
{ | |
m_error_flag = true; | |
return -1; | |
} | |
m_eof_flag = true; | |
*pEOF_flag = true; | |
} | |
return bytes_read; | |
} | |
bool jpeg_decoder_mem_stream::open(const uint8 *pSrc_data, uint size) | |
{ | |
close(); | |
m_pSrc_data = pSrc_data; | |
m_ofs = 0; | |
m_size = size; | |
return true; | |
} | |
int jpeg_decoder_mem_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) | |
{ | |
*pEOF_flag = false; | |
if (!m_pSrc_data) | |
return -1; | |
uint bytes_remaining = m_size - m_ofs; | |
if ((uint)max_bytes_to_read > bytes_remaining) | |
{ | |
max_bytes_to_read = bytes_remaining; | |
*pEOF_flag = true; | |
} | |
memcpy(pBuf, m_pSrc_data + m_ofs, max_bytes_to_read); | |
m_ofs += max_bytes_to_read; | |
return max_bytes_to_read; | |
} | |
unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps) | |
{ | |
if (!actual_comps) | |
return NULL; | |
*actual_comps = 0; | |
if ((!pStream) || (!width) || (!height) || (!req_comps)) | |
return NULL; | |
if ((req_comps != 1) && (req_comps != 3) && (req_comps != 4)) | |
return NULL; | |
jpeg_decoder decoder(pStream); | |
if (decoder.get_error_code() != JPGD_SUCCESS) | |
return NULL; | |
const int image_width = decoder.get_width(), image_height = decoder.get_height(); | |
*width = image_width; | |
*height = image_height; | |
*actual_comps = decoder.get_num_components(); | |
if (decoder.begin_decoding() != JPGD_SUCCESS) | |
return NULL; | |
const int dst_bpl = image_width * req_comps; | |
uint8 *pImage_data = (uint8*)jpgd_malloc(dst_bpl * image_height); | |
if (!pImage_data) | |
return NULL; | |
for (int y = 0; y < image_height; y++) | |
{ | |
const uint8* pScan_line = 0; | |
uint scan_line_len; | |
if (decoder.decode((const void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) | |
{ | |
jpgd_free(pImage_data); | |
return NULL; | |
} | |
uint8 *pDst = pImage_data + y * dst_bpl; | |
if (((req_comps == 4) && (decoder.get_num_components() == 3)) || | |
((req_comps == 1) && (decoder.get_num_components() == 1))) | |
{ | |
memcpy(pDst, pScan_line, dst_bpl); | |
} | |
else if (decoder.get_num_components() == 1) | |
{ | |
if (req_comps == 3) | |
{ | |
for (int x = 0; x < image_width; x++) | |
{ | |
uint8 luma = pScan_line[x]; | |
pDst[0] = luma; | |
pDst[1] = luma; | |
pDst[2] = luma; | |
pDst += 3; | |
} | |
} | |
else | |
{ | |
for (int x = 0; x < image_width; x++) | |
{ | |
uint8 luma = pScan_line[x]; | |
pDst[0] = luma; | |
pDst[1] = luma; | |
pDst[2] = luma; | |
pDst[3] = 255; | |
pDst += 4; | |
} | |
} | |
} | |
else if (decoder.get_num_components() == 3) | |
{ | |
if (req_comps == 1) | |
{ | |
const int YR = 19595, YG = 38470, YB = 7471; | |
for (int x = 0; x < image_width; x++) | |
{ | |
int r = pScan_line[x*4+0]; | |
int g = pScan_line[x*4+1]; | |
int b = pScan_line[x*4+2]; | |
*pDst++ = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); | |
} | |
} | |
else | |
{ | |
for (int x = 0; x < image_width; x++) | |
{ | |
pDst[0] = pScan_line[x*4+0]; | |
pDst[1] = pScan_line[x*4+1]; | |
pDst[2] = pScan_line[x*4+2]; | |
pDst += 3; | |
} | |
} | |
} | |
} | |
return pImage_data; | |
} | |
// BEGIN EPIC MOD | |
unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps, int format) | |
{ | |
jpg_format = (ERGBFormatJPG)format; | |
// EMD EPIC MOD | |
jpgd::jpeg_decoder_mem_stream mem_stream(pSrc_data, src_data_size); | |
return decompress_jpeg_image_from_stream(&mem_stream, width, height, actual_comps, req_comps); | |
} | |
unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps) | |
{ | |
jpgd::jpeg_decoder_file_stream file_stream; | |
if (!file_stream.open(pSrc_filename)) | |
return NULL; | |
return decompress_jpeg_image_from_stream(&file_stream, width, height, actual_comps, req_comps); | |
} | |
} // namespace jpgd | |