Create index.js
Browse files
index.js
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(async function () {
|
2 |
+
require('dotenv').config()
|
3 |
+
const express = require('express')
|
4 |
+
const tf = require("@tensorflow/tfjs-node")
|
5 |
+
const sharp = require("sharp");
|
6 |
+
const jpeg = require("jpeg-js")
|
7 |
+
const ffmpeg = require("fluent-ffmpeg")
|
8 |
+
const { fileTypeFromBuffer } = (await import('file-type'));
|
9 |
+
const stream = require("stream")
|
10 |
+
const ffmpegPath = require('@ffmpeg-installer/ffmpeg').path;
|
11 |
+
const ffprobePath = require('@ffprobe-installer/ffprobe').path;
|
12 |
+
const nsfwjs = require("nsfwjs");
|
13 |
+
const fs = require("fs")
|
14 |
+
ffmpeg.setFfprobePath(ffprobePath);
|
15 |
+
ffmpeg.setFfmpegPath(ffmpegPath);
|
16 |
+
// require("./model").loadModel()
|
17 |
+
const app = express()
|
18 |
+
const model = await nsfwjs.load("InceptionV3");
|
19 |
+
app.use(express.json())
|
20 |
+
|
21 |
+
app.all('/', async (req, res) => {
|
22 |
+
try {
|
23 |
+
const { img, auth } = req.query
|
24 |
+
if (img) {
|
25 |
+
if (process.env.AUTH) {
|
26 |
+
if (!auth || process.env.AUTH != auth) return res.send("Invalid auth code")
|
27 |
+
}
|
28 |
+
const imageBuffer = await fetch(img).then(async c => await c.arrayBuffer())
|
29 |
+
// console.log((await fileTypeFromBuffer(imageBuffer)).mime)
|
30 |
+
if ((await fileTypeFromBuffer(imageBuffer)).mime.includes("image")) {
|
31 |
+
const convertedBuffer = await sharp(Buffer.from(imageBuffer)).jpeg().toBuffer(); // convert webp to jpeg
|
32 |
+
const image = await convert(convertedBuffer)
|
33 |
+
const predictions = await model.classify(image);
|
34 |
+
image.dispose(); // Tensor memory must be managed explicitly (it is not sufficient to let a tf.Tensor go out of scope for its memory to be released).
|
35 |
+
return res.send(predictions);
|
36 |
+
} else {
|
37 |
+
let inputStream1 = new stream.PassThrough();
|
38 |
+
inputStream1.end(Buffer.from(imageBuffer));
|
39 |
+
|
40 |
+
ffmpeg.ffprobe(inputStream1, function (err, metadata) {
|
41 |
+
if (err) {
|
42 |
+
console.error(err);
|
43 |
+
return;
|
44 |
+
}
|
45 |
+
|
46 |
+
// Get a random second
|
47 |
+
const randomSecond = Math.floor(Math.random() * metadata.format.duration);
|
48 |
+
|
49 |
+
// Create a new input stream for the ffmpeg command
|
50 |
+
let inputStream2 = new stream.PassThrough();
|
51 |
+
inputStream2.end(Buffer.from(imageBuffer));
|
52 |
+
|
53 |
+
// Create a PassThrough stream to collect the output
|
54 |
+
const output = new stream.PassThrough();
|
55 |
+
|
56 |
+
// Set up the ffmpeg command
|
57 |
+
ffmpeg({ source: inputStream2 })
|
58 |
+
.seekInput(randomSecond)
|
59 |
+
.outputOptions('-vframes', '1')
|
60 |
+
.outputOptions('-f', 'image2pipe')
|
61 |
+
.outputOptions('-vcodec', 'png')
|
62 |
+
.output(output)
|
63 |
+
.on('error', console.error)
|
64 |
+
.run();
|
65 |
+
|
66 |
+
// Collect the output into a buffer
|
67 |
+
const chunks = [];
|
68 |
+
output.on('data', chunk => chunks.push(chunk));
|
69 |
+
output.on('end', async () => {
|
70 |
+
const buffer = Buffer.concat(chunks);
|
71 |
+
fs.writeFileSync("aa.png", buffer)
|
72 |
+
const convertedBuffer = await sharp(buffer).jpeg().toBuffer(); // convert webp to jpeg
|
73 |
+
const cimage = await convert(convertedBuffer)
|
74 |
+
const apredictions = await model.classify(cimage);
|
75 |
+
cimage.dispose(); // Tensor memory must be managed explicitly (it is not sufficient to let a tf.Tensor go out of scope for its memory to be released).
|
76 |
+
return res.send(apredictions);
|
77 |
+
});
|
78 |
+
});
|
79 |
+
}
|
80 |
+
|
81 |
+
}else{
|
82 |
+
return res.send('Hello World!')
|
83 |
+
}
|
84 |
+
} catch (err) {
|
85 |
+
console.log(err)
|
86 |
+
return res.status(500).json({ error: err.toString() })
|
87 |
+
}
|
88 |
+
})
|
89 |
+
|
90 |
+
const port = process.env.PORT || process.env.SERVER_PORT || 7860
|
91 |
+
|
92 |
+
app.listen(port, () => {
|
93 |
+
console.log(`Example app listening on port ${port}`)
|
94 |
+
})
|
95 |
+
const convert = async (img) => {
|
96 |
+
// Decoded image in UInt8 Byte array
|
97 |
+
const image = await jpeg.decode(img, { useTArray: true });
|
98 |
+
const numChannels = 3;
|
99 |
+
const numPixels = image.width * image.height;
|
100 |
+
const values = new Int32Array(numPixels * numChannels);
|
101 |
+
for (let i = 0; i < numPixels; i++)
|
102 |
+
for (let c = 0; c < numChannels; ++c)
|
103 |
+
values[i * numChannels + c] = image.data[i * 4 + c];
|
104 |
+
return tf.tensor3d(values, [image.height, image.width, numChannels], "int32");
|
105 |
+
};
|
106 |
+
})()
|