Spaces:
Sleeping
Sleeping
File size: 6,408 Bytes
7361754 2f1ae68 7361754 2f1ae68 7361754 2f1ae68 7361754 2f1ae68 7361754 2f1ae68 7361754 2f1ae68 1ef8711 2f1ae68 1ef8711 2f1ae68 1ef8711 2f1ae68 1ef8711 7361754 2f1ae68 7361754 1ef8711 7361754 1ef8711 7361754 1ef8711 2f1ae68 7361754 2f1ae68 7361754 2f1ae68 1ef8711 2f1ae68 7361754 1ef8711 7361754 1ef8711 2f1ae68 7361754 2f1ae68 7361754 2f1ae68 7361754 2f1ae68 1ef8711 7361754 2f1ae68 7361754 1ef8711 2f1ae68 1ef8711 7361754 2f1ae68 7361754 2f1ae68 7361754 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import networkx as nx
import matplotlib.pyplot as plt
from pathlib import Path
import spacy
import re
# Load spaCy model
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("Downloading spaCy model...")
import subprocess
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Define categories and their colors with better contrast
CATEGORIES = {
"Main Theme": "#4287f5", # Bright blue
"Event": "#42f54b", # Bright green
"Person": "#f542aa", # Pink
"Law": "#f5d442", # Yellow
"Concept": "#f54242" # Red
}
# Sample historical data for Unit 5 (1844-1877)
HISTORICAL_DATA = {
"civil war": {
"category": "Main Theme",
"related": [
("Abraham Lincoln", "Person"),
("Emancipation Proclamation", "Law"),
("Confederate States", "Concept"),
("Union Army", "Concept"),
("Battle of Gettysburg", "Event"),
("Slavery", "Main Theme"),
("Robert E. Lee", "Person"),
("Ulysses S. Grant", "Person")
]
},
"reconstruction": {
"category": "Main Theme",
"related": [
("13th Amendment", "Law"),
("14th Amendment", "Law"),
("15th Amendment", "Law"),
("Freedmen's Bureau", "Concept"),
("Andrew Johnson", "Person"),
("Black Codes", "Law"),
("Radical Republicans", "Concept"),
("Carpetbaggers", "Concept")
]
},
"manifest destiny": {
"category": "Main Theme",
"related": [
("Mexican-American War", "Event"),
("Oregon Territory", "Concept"),
("California Gold Rush", "Event"),
("James K. Polk", "Person"),
("Treaty of Guadalupe Hidalgo", "Law"),
("Westward Expansion", "Concept"),
("Native American Displacement", "Event"),
("Mexican Cession", "Event")
]
}
}
def categorize_term(term):
"""Categorize a term based on predefined data and NER."""
term_lower = term.lower()
# Check predefined categories first
if term_lower in HISTORICAL_DATA:
return HISTORICAL_DATA[term_lower]["category"]
# Use spaCy for NER
doc = nlp(term)
for ent in doc.ents:
if ent.label_ == "PERSON":
return "Person"
elif ent.label_ == "EVENT" or ent.label_ == "DATE":
return "Event"
elif ent.label_ == "LAW" or ent.label_ == "ORG":
return "Law"
# Default to Concept if no other category is found
return "Concept"
def get_related_terms(term):
"""Get related terms for a given historical term."""
term_lower = term.lower()
if term_lower in HISTORICAL_DATA:
return HISTORICAL_DATA[term_lower]["related"]
# If term not in predefined data, return some general connections
# based on the time period
general_connections = [
("Civil War", "Main Theme"),
("Reconstruction", "Main Theme"),
("Abraham Lincoln", "Person"),
("Slavery", "Concept"),
("United States", "Concept")
]
return general_connections[:5] # Limit to 5 connections
def generate_context_map(term):
"""Generate a network visualization for the given term."""
if not term or not term.strip():
return None
# Create graph
G = nx.Graph()
# Add main term
main_term = term.strip()
term_category = categorize_term(main_term)
G.add_node(main_term, category=term_category)
# Add related terms
related_terms = get_related_terms(main_term)
for related_term, category in related_terms:
if related_term.lower() != main_term.lower():
G.add_node(related_term, category=category)
G.add_edge(main_term, related_term)
# Create visualization
plt.figure(figsize=(12, 12))
plt.clf()
# Set light background for better contrast
plt.gca().set_facecolor('#ffffff')
plt.gcf().set_facecolor('#ffffff')
# Create layout
pos = nx.spring_layout(G, k=1.5, iterations=50)
# Draw nodes for each category
for category, color in CATEGORIES.items():
node_list = [node for node, attr in G.nodes(data=True)
if attr.get('category') == category]
if node_list:
nx.draw_networkx_nodes(G, pos,
nodelist=node_list,
node_color=color,
node_size=3000,
alpha=0.7)
# Draw edges
nx.draw_networkx_edges(G, pos, edge_color='gray', width=2, alpha=0.6)
# Add labels with better formatting
labels = nx.draw_networkx_labels(G, pos,
font_size=10,
font_weight='bold',
font_color='black')
# Add title and legend
plt.title(f"Historical Context Map for '{main_term}'",
fontsize=16,
pad=20)
# Add category legend
legend_elements = [plt.Line2D([0], [0], marker='o', color='w',
markerfacecolor=color, markersize=10,
label=category)
for category, color in CATEGORIES.items()]
plt.legend(handles=legend_elements, loc='upper left',
bbox_to_anchor=(1, 1))
plt.tight_layout()
return plt.gcf()
# Create Gradio interface
iface = gr.Interface(
fn=generate_context_map,
inputs=gr.Textbox(
label="Enter a historical term from Unit 5 (1844-1877)",
placeholder="e.g., Civil War, Abraham Lincoln, Reconstruction"
),
outputs=gr.Plot(),
title="Historical Context Mapper",
description="""Enter a term from Unit 5 (1844-1877) to see its historical context and connections.
The visualization will show how the term relates to key events, people, laws, and concepts from this period.""",
examples=[
["Civil War"],
["Reconstruction"],
["Manifest Destiny"],
["Abraham Lincoln"],
["Emancipation Proclamation"]
],
theme="default"
)
if __name__ == "__main__":
iface.launch() |