File size: 6,408 Bytes
7361754
 
 
 
2f1ae68
 
7361754
2f1ae68
 
 
 
 
 
 
 
7361754
2f1ae68
7361754
2f1ae68
 
 
 
 
7361754
 
2f1ae68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7361754
2f1ae68
 
1ef8711
 
2f1ae68
 
 
1ef8711
2f1ae68
 
1ef8711
2f1ae68
 
 
 
 
 
 
 
1ef8711
7361754
2f1ae68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7361754
 
1ef8711
7361754
1ef8711
 
 
7361754
1ef8711
2f1ae68
 
 
7361754
2f1ae68
 
 
 
 
 
7361754
 
 
 
 
2f1ae68
 
 
1ef8711
 
2f1ae68
7361754
1ef8711
7361754
1ef8711
 
 
 
 
 
2f1ae68
 
7361754
 
2f1ae68
7361754
2f1ae68
 
 
 
 
7361754
2f1ae68
 
 
1ef8711
7361754
2f1ae68
 
 
 
 
 
 
 
 
7361754
 
 
 
 
1ef8711
2f1ae68
1ef8711
 
7361754
 
2f1ae68
 
7361754
 
 
 
2f1ae68
 
 
 
7361754
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import networkx as nx
import matplotlib.pyplot as plt
from pathlib import Path
import spacy
import re

# Load spaCy model
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    print("Downloading spaCy model...")
    import subprocess
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Define categories and their colors with better contrast
CATEGORIES = {
    "Main Theme": "#4287f5",    # Bright blue
    "Event": "#42f54b",         # Bright green
    "Person": "#f542aa",        # Pink
    "Law": "#f5d442",          # Yellow
    "Concept": "#f54242"       # Red
}

# Sample historical data for Unit 5 (1844-1877)
HISTORICAL_DATA = {
    "civil war": {
        "category": "Main Theme",
        "related": [
            ("Abraham Lincoln", "Person"),
            ("Emancipation Proclamation", "Law"),
            ("Confederate States", "Concept"),
            ("Union Army", "Concept"),
            ("Battle of Gettysburg", "Event"),
            ("Slavery", "Main Theme"),
            ("Robert E. Lee", "Person"),
            ("Ulysses S. Grant", "Person")
        ]
    },
    "reconstruction": {
        "category": "Main Theme",
        "related": [
            ("13th Amendment", "Law"),
            ("14th Amendment", "Law"),
            ("15th Amendment", "Law"),
            ("Freedmen's Bureau", "Concept"),
            ("Andrew Johnson", "Person"),
            ("Black Codes", "Law"),
            ("Radical Republicans", "Concept"),
            ("Carpetbaggers", "Concept")
        ]
    },
    "manifest destiny": {
        "category": "Main Theme",
        "related": [
            ("Mexican-American War", "Event"),
            ("Oregon Territory", "Concept"),
            ("California Gold Rush", "Event"),
            ("James K. Polk", "Person"),
            ("Treaty of Guadalupe Hidalgo", "Law"),
            ("Westward Expansion", "Concept"),
            ("Native American Displacement", "Event"),
            ("Mexican Cession", "Event")
        ]
    }
}

def categorize_term(term):
    """Categorize a term based on predefined data and NER."""
    term_lower = term.lower()
    
    # Check predefined categories first
    if term_lower in HISTORICAL_DATA:
        return HISTORICAL_DATA[term_lower]["category"]
    
    # Use spaCy for NER
    doc = nlp(term)
    for ent in doc.ents:
        if ent.label_ == "PERSON":
            return "Person"
        elif ent.label_ == "EVENT" or ent.label_ == "DATE":
            return "Event"
        elif ent.label_ == "LAW" or ent.label_ == "ORG":
            return "Law"
    
    # Default to Concept if no other category is found
    return "Concept"

def get_related_terms(term):
    """Get related terms for a given historical term."""
    term_lower = term.lower()
    
    if term_lower in HISTORICAL_DATA:
        return HISTORICAL_DATA[term_lower]["related"]
    
    # If term not in predefined data, return some general connections
    # based on the time period
    general_connections = [
        ("Civil War", "Main Theme"),
        ("Reconstruction", "Main Theme"),
        ("Abraham Lincoln", "Person"),
        ("Slavery", "Concept"),
        ("United States", "Concept")
    ]
    return general_connections[:5]  # Limit to 5 connections

def generate_context_map(term):
    """Generate a network visualization for the given term."""
    if not term or not term.strip():
        return None
    
    # Create graph
    G = nx.Graph()
    
    # Add main term
    main_term = term.strip()
    term_category = categorize_term(main_term)
    G.add_node(main_term, category=term_category)
    
    # Add related terms
    related_terms = get_related_terms(main_term)
    for related_term, category in related_terms:
        if related_term.lower() != main_term.lower():
            G.add_node(related_term, category=category)
            G.add_edge(main_term, related_term)
    
    # Create visualization
    plt.figure(figsize=(12, 12))
    plt.clf()
    
    # Set light background for better contrast
    plt.gca().set_facecolor('#ffffff')
    plt.gcf().set_facecolor('#ffffff')
    
    # Create layout
    pos = nx.spring_layout(G, k=1.5, iterations=50)
    
    # Draw nodes for each category
    for category, color in CATEGORIES.items():
        node_list = [node for node, attr in G.nodes(data=True) 
                    if attr.get('category') == category]
        if node_list:
            nx.draw_networkx_nodes(G, pos, 
                                 nodelist=node_list,
                                 node_color=color, 
                                 node_size=3000,
                                 alpha=0.7)
    
    # Draw edges
    nx.draw_networkx_edges(G, pos, edge_color='gray', width=2, alpha=0.6)
    
    # Add labels with better formatting
    labels = nx.draw_networkx_labels(G, pos, 
                                   font_size=10, 
                                   font_weight='bold',
                                   font_color='black')
    
    # Add title and legend
    plt.title(f"Historical Context Map for '{main_term}'", 
              fontsize=16, 
              pad=20)
    
    # Add category legend
    legend_elements = [plt.Line2D([0], [0], marker='o', color='w', 
                                 markerfacecolor=color, markersize=10, 
                                 label=category)
                      for category, color in CATEGORIES.items()]
    plt.legend(handles=legend_elements, loc='upper left', 
              bbox_to_anchor=(1, 1))
    
    plt.tight_layout()
    return plt.gcf()

# Create Gradio interface
iface = gr.Interface(
    fn=generate_context_map,
    inputs=gr.Textbox(
        label="Enter a historical term from Unit 5 (1844-1877)",
        placeholder="e.g., Civil War, Abraham Lincoln, Reconstruction"
    ),
    outputs=gr.Plot(),
    title="Historical Context Mapper",
    description="""Enter a term from Unit 5 (1844-1877) to see its historical context and connections.
                   The visualization will show how the term relates to key events, people, laws, and concepts from this period.""",
    examples=[
        ["Civil War"],
        ["Reconstruction"],
        ["Manifest Destiny"],
        ["Abraham Lincoln"],
        ["Emancipation Proclamation"]
    ],
    theme="default"
)

if __name__ == "__main__":
    iface.launch()