File size: 7,051 Bytes
b9549f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import random
import csv
import os
import logging
import hashlib
from typing import List, Dict
from datetime import datetime
from mistralai import Mistral

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Get the Mistral API key from environment variables
api_key = os.environ.get("MISTRAL_API_KEY")
if not api_key:
    logging.error("MISTRAL_API_KEY environment variable is not set.")
    raise ValueError("MISTRAL_API_KEY environment variable is not set.")

model = "mistral-large-latest"

# Initialize Mistral client
client = Mistral(api_key=api_key)

def load_csv_data(file_path: str) -> List[Dict[str, str]]:
    """Load data from a CSV file."""
    logging.info(f"Loading data from {file_path}...")
    try:
        with open(file_path, 'r', encoding='utf-8') as csvfile:
            reader = csv.DictReader(csvfile)
            data = list(reader)
        logging.info(f"Loaded {len(data)} rows from {file_path}")
        return data
    except FileNotFoundError:
        logging.error(f"File not found: {file_path}")
        raise
    except csv.Error as e:
        logging.error(f"Error reading CSV file {file_path}: {e}")
        raise

# Load data from both CSV files
try:
    detailed_cases = load_csv_data('processed_medical_history.csv')
    infectious_diseases = load_csv_data('infectious_diseases.csv')
except Exception as e:
    logging.error(f"Failed to load CSV data: {e}")
    raise

def hash_question(question: str) -> str:
    """Generate a hash for a question to check for duplicates."""
    return hashlib.md5(question.encode()).hexdigest()

def load_generated_questions() -> set:
    """Load previously generated question hashes from a file."""
    try:
        with open('generated_questions.txt', 'r') as f:
            return set(line.strip() for line in f)
    except FileNotFoundError:
        return set()

def save_generated_question(question_hash: str):
    """Save a newly generated question hash to the file."""
    with open('generated_questions.txt', 'a') as f:
        f.write(question_hash + '\n')

generated_questions = load_generated_questions()

def generate_microbiology_question() -> Dict[str, str]:
    """Generate a microbiology question."""
    question_types = [
        "clinical_vignette",
        "mechanism_of_pathogenesis",
        "laboratory_diagnosis",
        "antimicrobial_resistance",
        "vaccine_preventable_disease",
        "microbial_physiology_genetics",
        "epidemiology_transmission"
    ]
    question_type = random.choice(question_types)
    logging.info(f"Generating {question_type} question...")
    
    if question_type == "clinical_vignette":
        case = random.choice(detailed_cases)
        context = f"""
        Pathogen: {case['Pathogen_Name']} ({case['Pathogen_Type']})
        Key Symptoms: {case['Key_Symptoms']}
        Physical Findings: {case['Physical_Findings']}
        Lab Results: {case['Lab_Results']}
        Patient Demographics: {case['Patient_Demographics']}
        """
    else:
        disease = random.choice(infectious_diseases)
        context = f"""
        Infectious Agent: {disease['infectious_agent']}
        Diagnosis: {disease['diagnosis']}
        Treatment: {disease['treatment']}
        """
    
    prompt = f"""
    Create a microbiology question that could appear on the NBME exam. This should be a {question_type} question.
    Use the following information as inspiration, but feel free to expand or modify:
    
    {context}

    Generate a question based on the following template, depending on the question type:

    1. Clinical Vignette with Pathogen Identification:
    A [age]-year-old [gender] presents with [symptoms and clinical findings]. [Additional relevant information]. Which of the following is the most likely causal organism?

    2. Mechanism of Pathogenesis:
    [Description of a pathogen or clinical scenario]
    Which of the following best describes the mechanism by which this organism causes disease?

    3. Laboratory Diagnosis:
    A patient presents with [symptoms]. [Description of laboratory findings or test results].
    Which of the following is the most likely diagnosis based on these laboratory findings?

    4. Antimicrobial Mechanism and Resistance:
    A patient is diagnosed with [infection]. The causative organism is found to be resistant to [antibiotic]. Which of the following mechanisms is most likely responsible for this resistance?

    5. Vaccine-Preventable Disease:
    A [age]-year-old [gender] presents with [symptoms of a vaccine-preventable disease]. Which of the following vaccines would have been most likely to prevent this condition?

    6. Microbial Physiology and Genetics:
    An investigator observes [description of microbial behavior or genetic phenomenon]. Which of the following best explains this observation?

    7. Epidemiology and Transmission:
    A cluster of [disease] cases is reported in [location]. [Description of affected population and circumstances]. Which of the following is the most likely mode of transmission?

    Include:
    1. The question based on the selected template
    2. Five possible answer options (A through E)
    3. The correct answer
    4. A brief explanation of why the correct answer is right and why the other options are incorrect
    5. Detailed medical reasoning for the correct answer, including relevant pathophysiology, microbiology concepts, and clinical implications.

    Format the response as a JSON object with the following keys:
    
    {
        "question": "The question text",
        "options": {
            "A": "Option A text",
            "B": "Option B text",
            "C": "Option C text",
            "D": "Option D text",
            "E": "Option E text"
        },
        "correct_answer": "The letter of the correct answer (A, B, C, D, or E)",
        "explanation": "The explanation text",
        "medical_reasoning": "The detailed medical reasoning text"
    }
    """
    
    chat_response = client.chat.complete(
        model=model,
        messages=[
            {
                "role": "system",
                "content": "You are a medical educator creating unique microbiology questions for the NBME exam. Ensure each question is distinct from previously generated ones and follows the specified template."
            },
            {
                "role": "user",
                "content": prompt
            }
        ]
    )
    
    response_content = chat_response.choices[0].message.content
    # Parse the JSON response
    import json
    question_data = json.loads(response_content)
    
    # Save the question hash
    question_hash = hash_question(question_data['question'])
    if question_hash not in generated_questions:
        generated_questions.add(question_hash)
        save_generated_question(question_hash)
    
    return question_data

# Example usage
if __name__ == "__main__":
    question = generate_microbiology_question()
    print(json.dumps(question, indent=2))