Spaces:
Running
on
Zero
Running
on
Zero
Update src/pipeline_pe_clone.py
Browse files- src/pipeline_pe_clone.py +6 -16
src/pipeline_pe_clone.py
CHANGED
@@ -48,24 +48,14 @@ def prepare_latent_image_ids_2(height, width, device, dtype):
|
|
48 |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x坐标
|
49 |
return latent_image_ids
|
50 |
|
51 |
-
# def position_encoding_clone(batch_size, original_height, original_width, device, dtype):
|
52 |
-
# latent_image_ids = prepare_latent_image_ids_2(original_height, original_width, device, dtype)
|
53 |
-
# latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
54 |
-
# latent_image_ids = latent_image_ids.reshape(
|
55 |
-
# latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
56 |
-
# )
|
57 |
-
# cond_latent_image_ids = latent_image_ids
|
58 |
-
# latent_image_ids = torch.concat([latent_image_ids, cond_latent_image_ids], dim=-2)
|
59 |
-
# return latent_image_ids
|
60 |
-
|
61 |
def position_encoding_clone(batch_size, original_height, original_width, device, dtype):
|
62 |
latent_image_ids = prepare_latent_image_ids_2(original_height, original_width, device, dtype)
|
63 |
-
|
64 |
-
latent_image_ids = latent_image_ids.reshape(
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
latent_image_ids =
|
69 |
return latent_image_ids
|
70 |
|
71 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
|
|
48 |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x坐标
|
49 |
return latent_image_ids
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def position_encoding_clone(batch_size, original_height, original_width, device, dtype):
|
52 |
latent_image_ids = prepare_latent_image_ids_2(original_height, original_width, device, dtype)
|
53 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
54 |
+
latent_image_ids = latent_image_ids.reshape(
|
55 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
56 |
+
)
|
57 |
+
cond_latent_image_ids = latent_image_ids
|
58 |
+
latent_image_ids = torch.concat([latent_image_ids, cond_latent_image_ids], dim=-2)
|
59 |
return latent_image_ids
|
60 |
|
61 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|