import gradio as gr import torch from PIL import Image from src.pipeline_pe_clone import FluxPipeline import spaces import os import huggingface_hub huggingface_hub.login(os.getenv('HF_TOKEN_FLUX2')) # Load default image from assets as an example default_image = Image.open("assets/1.png") pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, ).to('cuda') @spaces.GPU() def generate_image(image, prompt, guidance_scale, num_steps, lora_name): # Load the model # Load and fuse base LoRA weights # pipeline.load_lora_weights("nicolaus-huang/PhotoDoodle", weight_name="pretrain.safetensors") # pipeline.fuse_lora() # pipeline.unload_lora_weights() # Load selected LoRA effect if not using the pretrained base model pipeline.load_lora_weights("nicolaus-huang/PhotoDoodle", weight_name=f"{lora_name}.safetensors") pipeline.fuse_lora() height=768 width=512 # Prepare the input image condition_image = image.resize((height, width)).convert("RGB") # Generate the output image result = pipeline( prompt=prompt, condition_image=condition_image, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_steps, max_sequence_length=512 ).images[0] final_image = image.resize(image.size) return final_image # Define examples to be shown within the Gradio interface examples = [ # Each example is a list corresponding to the inputs: # [Input Image, Prompt, Guidance Scale, Number of Steps, LoRA Name] ["assets/1.png", "add a halo and wings for the cat by sksmagiceffects", 3.5, 20, "sksmagiceffects"] ] # Create Gradio interface with sliders for numeric inputs iface = gr.Interface( fn=generate_image, inputs=[ gr.Image(label="Input Image", type="pil", value=default_image), # gr.Slider(label="Height", value=768, minimum=256, maximum=1024, step=64), # gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64), gr.Textbox(label="Prompt", value="add a halo and wings for the cat by sksmagiceffects"), gr.Slider(label="Guidance Scale", value=3.5, minimum=1.0, maximum=10.0, step=0.1), gr.Slider(label="Number of Steps", value=20, minimum=1, maximum=100, step=1), gr.Dropdown( label="LoRA Name", choices=["pretrained", "sksmagiceffects", "sksmonstercalledlulu", "skspaintingeffects", "sksedgeeffect", "skscatooneffect"], value="sksmagiceffects" ) ], outputs=gr.Image(label="Output Image", type="pil"), title="FLUX Image Generation with LoRA", examples=examples ) if __name__ == "__main__": iface.launch()