Spaces:
Runtime error
Runtime error
revert for prev will setup for next
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# pip install diffusers, transformers, accelerate, safetensors, huggingface_hub
|
2 |
|
3 |
|
4 |
import os
|
@@ -12,273 +11,168 @@ import PIL.Image
|
|
12 |
|
13 |
import spaces
|
14 |
import torch
|
15 |
-
from diffusers import
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
from huggingface_hub import hf_hub_download
|
21 |
-
from
|
22 |
|
23 |
DESCRIPTION = """
|
24 |
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models
|
25 |
**Demo by [ameer azam] - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)**
|
26 |
-
This is a demo of https://huggingface.co/jiaxiangc/res-adapter
|
|
|
27 |
|
28 |
-
ByteDance provide a demo of [ResAdapter](https://huggingface.co/jiaxiangc/res-adapter) with [SDXL-Lightning-Step4](https://huggingface.co/ByteDance/SDXL-Lightning) to expand resolution range from 1024-only to 256~1024.
|
29 |
"""
|
30 |
if not torch.cuda.is_available():
|
31 |
-
DESCRIPTION +=
|
32 |
-
|
33 |
-
|
34 |
|
35 |
MAX_SEED = np.iinfo(np.int32).max
|
36 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
37 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
38 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
39 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
40 |
|
41 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
44 |
-
repo = "ByteDance/SDXL-Lightning"
|
45 |
-
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
|
46 |
|
47 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
48 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
49 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16")
|
50 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
51 |
-
pipe = pipe.to(device)
|
52 |
|
53 |
-
# Load resadapter
|
54 |
pipe.load_lora_weights(
|
55 |
hf_hub_download(
|
56 |
-
repo_id="jiaxiangc/res-adapter",
|
57 |
-
subfolder="sdxl-i",
|
58 |
filename="resolution_lora.safetensors",
|
59 |
),
|
60 |
adapter_name="res_adapter",
|
61 |
)
|
|
|
|
|
62 |
|
63 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
64 |
if randomize_seed:
|
65 |
-
seed = random.randint(0, MAX_SEED)
|
66 |
-
return seed
|
67 |
-
|
68 |
-
|
69 |
-
@spaces.GPU(enable_queue=True)
|
70 |
-
def generate(
|
71 |
-
prompt: str,
|
72 |
-
negative_prompt: str = "",
|
73 |
-
prompt_2: str = "",
|
74 |
-
negative_prompt_2: str = "",
|
75 |
-
use_negative_prompt: bool = False,
|
76 |
-
use_prompt_2: bool = False,
|
77 |
-
use_negative_prompt_2: bool = False,
|
78 |
seed: int = 0,
|
79 |
width: int = 1024,
|
80 |
height: int = 1024,
|
81 |
-
|
82 |
-
|
83 |
progress=gr.Progress(track_tqdm=True),
|
84 |
) -> PIL.Image.Image:
|
85 |
-
print(f
|
86 |
generator = torch.Generator().manual_seed(seed)
|
87 |
|
88 |
if not use_negative_prompt:
|
89 |
-
negative_prompt = None # type: ignore
|
90 |
-
if not use_prompt_2:
|
91 |
prompt_2 = None # type: ignore
|
92 |
if not use_negative_prompt_2:
|
93 |
negative_prompt_2 = None # type: ignore
|
|
|
|
|
94 |
|
95 |
-
pipe.set_adapters(["res_adapter"], adapter_weights=[0.0])
|
96 |
-
base_image = pipe(
|
97 |
prompt=prompt,
|
98 |
negative_prompt=negative_prompt,
|
99 |
prompt_2=prompt_2,
|
100 |
negative_prompt_2=negative_prompt_2,
|
101 |
width=width,
|
102 |
height=height,
|
103 |
-
|
104 |
-
|
105 |
-
output_type="pil",
|
106 |
generator=generator,
|
|
|
|
|
107 |
).images[0]
|
108 |
|
|
|
|
|
109 |
|
110 |
-
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
111 |
-
res_adapt = pipe(
|
112 |
prompt=prompt,
|
113 |
negative_prompt=negative_prompt,
|
114 |
prompt_2=prompt_2,
|
115 |
negative_prompt_2=negative_prompt_2,
|
116 |
width=width,
|
117 |
height=height,
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
generator=generator,
|
122 |
-
|
123 |
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
examples = [
|
128 |
-
"A
|
129 |
-
"
|
|
|
130 |
]
|
131 |
|
132 |
theme = gr.themes.Base(
|
133 |
-
font=[
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
)
|
140 |
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
141 |
gr.Markdown(DESCRIPTION)
|
142 |
-
gr.DuplicateButton(
|
143 |
-
value="Duplicate Space for private use",
|
144 |
-
elem_id="duplicate-button",
|
145 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
146 |
-
)
|
147 |
-
with gr.Group():
|
148 |
-
prompt = gr.Text(
|
149 |
-
label="Prompt",
|
150 |
-
show_label=False,
|
151 |
-
max_lines=1,
|
152 |
-
container=False,
|
153 |
-
placeholder="Enter your prompt",
|
154 |
-
)
|
155 |
-
run_button = gr.Button("Generate")
|
156 |
# result = gr.Gallery(label="Right is Res-Adapt-LORA and Left is Base"),
|
157 |
with gr.Accordion("Advanced options", open=False):
|
158 |
with gr.Row():
|
159 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=
|
160 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
161 |
-
use_negative_prompt_2 = gr.Checkbox(
|
162 |
-
|
163 |
-
|
164 |
negative_prompt = gr.Text(
|
165 |
label="Negative prompt",
|
166 |
max_lines=1,
|
167 |
-
placeholder="
|
168 |
visible=True,
|
169 |
)
|
170 |
prompt_2 = gr.Text(
|
171 |
-
label="Prompt 2",
|
172 |
-
max_lines=1,
|
173 |
-
placeholder="Enter your prompt",
|
174 |
-
visible=False,
|
175 |
-
)
|
176 |
-
negative_prompt_2 = gr.Text(
|
177 |
-
label="Negative prompt 2",
|
178 |
-
max_lines=1,
|
179 |
-
placeholder="Enter a negative prompt",
|
180 |
-
visible=False,
|
181 |
-
)
|
182 |
-
|
183 |
-
seed = gr.Slider(
|
184 |
-
label="Seed",
|
185 |
-
minimum=0,
|
186 |
-
maximum=MAX_SEED,
|
187 |
-
step=1,
|
188 |
-
value=0,
|
189 |
-
)
|
190 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
191 |
-
with gr.Row():
|
192 |
-
width = gr.Slider(
|
193 |
-
label="Width",
|
194 |
-
minimum=256,
|
195 |
-
maximum=MAX_IMAGE_SIZE,
|
196 |
-
step=32,
|
197 |
-
value=512,
|
198 |
-
)
|
199 |
-
height = gr.Slider(
|
200 |
-
label="Height",
|
201 |
-
minimum=256,
|
202 |
-
maximum=MAX_IMAGE_SIZE,
|
203 |
-
step=32,
|
204 |
value=512,
|
205 |
)
|
206 |
with gr.Row():
|
207 |
-
|
208 |
-
label="Guidance scale",
|
209 |
-
minimum=
|
210 |
maximum=20,
|
211 |
step=0.1,
|
212 |
-
value=
|
213 |
)
|
214 |
-
|
215 |
-
label="Number of inference steps",
|
216 |
-
minimum=
|
217 |
-
maximum=
|
218 |
step=1,
|
219 |
-
value=
|
220 |
)
|
221 |
gr.Examples(
|
222 |
examples=examples,
|
223 |
-
inputs=prompt,
|
224 |
-
outputs=None,
|
225 |
-
fn=generate,
|
226 |
-
cache_examples=CACHE_EXAMPLES,
|
227 |
-
)
|
228 |
-
|
229 |
-
use_negative_prompt.change(
|
230 |
-
fn=lambda x: gr.update(visible=x),
|
231 |
-
inputs=use_negative_prompt,
|
232 |
-
outputs=negative_prompt,
|
233 |
-
queue=False,
|
234 |
-
api_name=False,
|
235 |
-
)
|
236 |
-
use_prompt_2.change(
|
237 |
-
fn=lambda x: gr.update(visible=x),
|
238 |
-
inputs=use_prompt_2,
|
239 |
-
outputs=prompt_2,
|
240 |
-
queue=False,
|
241 |
-
api_name=False,
|
242 |
-
)
|
243 |
-
use_negative_prompt_2.change(
|
244 |
-
fn=lambda x: gr.update(visible=x),
|
245 |
-
inputs=use_negative_prompt_2,
|
246 |
-
outputs=negative_prompt_2,
|
247 |
-
queue=False,
|
248 |
-
api_name=False,
|
249 |
-
)
|
250 |
-
gr.on(
|
251 |
-
triggers=[
|
252 |
-
prompt.submit,
|
253 |
-
negative_prompt.submit,
|
254 |
-
prompt_2.submit,
|
255 |
-
negative_prompt_2.submit,
|
256 |
-
run_button.click,
|
257 |
-
],
|
258 |
-
fn=randomize_seed_fn,
|
259 |
-
inputs=[seed, randomize_seed],
|
260 |
-
outputs=seed,
|
261 |
-
queue=False,
|
262 |
-
api_name=False,
|
263 |
-
).then(
|
264 |
-
fn=generate,
|
265 |
-
inputs=[
|
266 |
-
prompt,
|
267 |
-
negative_prompt,
|
268 |
-
prompt_2,
|
269 |
-
negative_prompt_2,
|
270 |
-
use_negative_prompt,
|
271 |
-
use_prompt_2,
|
272 |
-
use_negative_prompt_2,
|
273 |
seed,
|
274 |
width,
|
275 |
height,
|
276 |
-
|
277 |
-
|
278 |
],
|
279 |
-
outputs=gr.Gallery(label="Left is
|
280 |
api_name="run",
|
281 |
)
|
282 |
|
283 |
if __name__ == "__main__":
|
284 |
-
demo.queue(max_size=20, api_open=False).launch(show_api=False)
|
|
|
|
|
1 |
|
2 |
|
3 |
import os
|
|
|
11 |
|
12 |
import spaces
|
13 |
import torch
|
14 |
+
from diffusers import AutoPipelineForText2Image, DPMSolverMultistepScheduler
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
21 |
|
22 |
DESCRIPTION = """
|
23 |
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models
|
24 |
**Demo by [ameer azam] - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)**
|
25 |
+
This is a demo of https://huggingface.co/jiaxiangc/res-adapter LORAs by ByteDance
|
26 |
+
|
27 |
|
|
|
28 |
"""
|
29 |
if not torch.cuda.is_available():
|
30 |
+
DESCRIPTION += "\n<h1>Running on CPU π₯Ά This demo does not work on CPU.</a> instead</h1>"
|
31 |
+
|
32 |
+
|
33 |
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
|
|
|
|
36 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
37 |
|
38 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
39 |
+
pipe = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0',use_safetensors=True)# torch_dtype=torch.float16, variant="safetensors")
|
40 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
53 |
pipe.load_lora_weights(
|
54 |
hf_hub_download(
|
55 |
+
repo_id="jiaxiangc/res-adapter",
|
56 |
+
subfolder="sdxl-i",
|
57 |
filename="resolution_lora.safetensors",
|
58 |
),
|
59 |
adapter_name="res_adapter",
|
60 |
)
|
61 |
+
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
62 |
+
pipe = pipe.to(device)
|
63 |
|
64 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
65 |
if randomize_seed:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
seed: int = 0,
|
67 |
width: int = 1024,
|
68 |
height: int = 1024,
|
69 |
+
guidance_scale_base: float = 5.0,
|
70 |
+
num_inference_steps_base: int = 20,
|
71 |
progress=gr.Progress(track_tqdm=True),
|
72 |
) -> PIL.Image.Image:
|
73 |
+
print(f"** Generating image for: \"{prompt}\" **")
|
74 |
generator = torch.Generator().manual_seed(seed)
|
75 |
|
76 |
if not use_negative_prompt:
|
|
|
|
|
77 |
prompt_2 = None # type: ignore
|
78 |
if not use_negative_prompt_2:
|
79 |
negative_prompt_2 = None # type: ignore
|
80 |
+
res_adapt=pipe(
|
81 |
+
|
82 |
|
|
|
|
|
83 |
prompt=prompt,
|
84 |
negative_prompt=negative_prompt,
|
85 |
prompt_2=prompt_2,
|
86 |
negative_prompt_2=negative_prompt_2,
|
87 |
width=width,
|
88 |
height=height,
|
89 |
+
guidance_scale=guidance_scale_base,
|
90 |
+
num_inference_steps=num_inference_steps_base,
|
|
|
91 |
generator=generator,
|
92 |
+
output_type="pil",
|
93 |
+
|
94 |
).images[0]
|
95 |
|
96 |
+
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
97 |
+
base_image = pipe(
|
98 |
|
|
|
|
|
99 |
prompt=prompt,
|
100 |
negative_prompt=negative_prompt,
|
101 |
prompt_2=prompt_2,
|
102 |
negative_prompt_2=negative_prompt_2,
|
103 |
width=width,
|
104 |
height=height,
|
105 |
+
guidance_scale=guidance_scale_base,
|
106 |
+
num_inference_steps=num_inference_steps_base,
|
107 |
+
|
108 |
generator=generator,
|
109 |
+
output_type="pil").images[0]
|
110 |
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
return [res_adapt,base_image]
|
115 |
|
116 |
|
117 |
examples = [
|
118 |
+
"A realistic photograph of an astronaut in a jungle, cold color palette, detailed, 8k",
|
119 |
+
"An astronaut riding a green horse",
|
120 |
+
"cinematic film still, photo of a girl, cyberpunk, neonpunk, headset, city at night, sony fe 12-24mm f/2.8 gm, close up, 32k uhd, wallpaper, analog film grain, SONY headset"
|
121 |
]
|
122 |
|
123 |
theme = gr.themes.Base(
|
124 |
+
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
)
|
131 |
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
132 |
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
# result = gr.Gallery(label="Right is Res-Adapt-LORA and Left is Base"),
|
134 |
with gr.Accordion("Advanced options", open=False):
|
135 |
with gr.Row():
|
136 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
137 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
138 |
+
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
139 |
+
|
140 |
+
|
141 |
negative_prompt = gr.Text(
|
142 |
label="Negative prompt",
|
143 |
max_lines=1,
|
144 |
+
placeholder="ugly, deformed, noisy, blurry, nsfw, low contrast, text, BadDream, 3d, cgi, render, fake, anime, open mouth, big forehead, long neck",
|
145 |
visible=True,
|
146 |
)
|
147 |
prompt_2 = gr.Text(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
value=512,
|
149 |
)
|
150 |
with gr.Row():
|
151 |
+
guidance_scale_base = gr.Slider(
|
152 |
+
label="Guidance scale for base",
|
153 |
+
minimum=1,
|
154 |
maximum=20,
|
155 |
step=0.1,
|
156 |
+
value=9.5,
|
157 |
)
|
158 |
+
num_inference_steps_base = gr.Slider(
|
159 |
+
label="Number of inference steps for base",
|
160 |
+
minimum=10,
|
161 |
+
maximum=100,
|
162 |
step=1,
|
163 |
+
value=25,
|
164 |
)
|
165 |
gr.Examples(
|
166 |
examples=examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
seed,
|
168 |
width,
|
169 |
height,
|
170 |
+
guidance_scale_base,
|
171 |
+
num_inference_steps_base,
|
172 |
],
|
173 |
+
outputs=gr.Gallery(label="Left is Res-Adapt-LORA and Right is Base"),
|
174 |
api_name="run",
|
175 |
)
|
176 |
|
177 |
if __name__ == "__main__":
|
178 |
+
demo.queue(max_size=20, api_open=False).launch(show_api=False)
|