Spaces:
Paused
Paused
ameerazam08
commited on
app.py file
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import random
|
8 |
+
|
9 |
+
# SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
10 |
+
|
11 |
+
# Constants
|
12 |
+
repo = "IDKiro/sdxs-512-0.9"
|
13 |
+
|
14 |
+
|
15 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
weight_type = torch.float32
|
18 |
+
pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=weight_type)
|
19 |
+
|
20 |
+
# pipe.vae = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-0.9/vae_large") # use original VAE
|
21 |
+
pipe.to("cuda")
|
22 |
+
|
23 |
+
# Function
|
24 |
+
@spaces.GPU(enable_queue=True)
|
25 |
+
def generate_image(prompt):
|
26 |
+
seed = random.randint(-100000,100000)
|
27 |
+
|
28 |
+
results = pipe(
|
29 |
+
prompt,
|
30 |
+
num_inference_steps=1,
|
31 |
+
guidance_scale=0,
|
32 |
+
generator=torch.Generator(device="cuda").manual_seed(seed)
|
33 |
+
)
|
34 |
+
return results.images[0]
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
# Gradio Interface
|
39 |
+
description = """
|
40 |
+
This demo utilizes the SDXLS model
|
41 |
+
"""
|
42 |
+
|
43 |
+
with gr.Blocks(css="style.css") as demo:
|
44 |
+
gr.HTML("<h1><center>Text-to-Image with SDXS ⚡</center></h1>")
|
45 |
+
gr.Markdown(description)
|
46 |
+
with gr.Group():
|
47 |
+
with gr.Row():
|
48 |
+
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8, value="portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour")
|
49 |
+
num_inference_steps = gr.Slider(label="num_inference_steps", value=1,interactive=True)
|
50 |
+
submit = gr.Button(scale=1, variant='primary')
|
51 |
+
img = gr.Image(label='SDXS Generated Image')
|
52 |
+
|
53 |
+
prompt.submit(fn=generate_image,
|
54 |
+
inputs=[prompt],
|
55 |
+
outputs=img,
|
56 |
+
)
|
57 |
+
submit.click(fn=generate_image,
|
58 |
+
inputs=[prompt],
|
59 |
+
outputs=img,
|
60 |
+
)
|
61 |
+
|
62 |
+
demo.queue().launch()
|