Spaces:
Sleeping
Sleeping
import logging | |
import gradio as gr | |
import fitz # PyMuPDF | |
from transformers import BartTokenizer, BartForConditionalGeneration, pipeline | |
import scipy.io.wavfile | |
import numpy as np | |
# Initialize logging | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize tokenizers and models | |
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') | |
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') | |
synthesiser = pipeline("text-to-speech", "suno/bark") | |
def extract_abstract(pdf_bytes): | |
try: | |
doc = fitz.open(stream=pdf_bytes, filetype="pdf") | |
first_page = doc[0].get_text() | |
start_idx = first_page.lower().find("abstract") | |
end_idx = first_page.lower().find("introduction") | |
if start_idx != -1 and end_idx != -1: | |
return first_page[start_idx:end_idx].strip() | |
else: | |
return "Abstract not found or 'Introduction' not found in the first page." | |
except Exception as e: | |
logging.error(f"Error extracting abstract: {e}") | |
return "Error in abstract extraction" | |
def process_text(uploaded_file): | |
# Debugging: Print the type and contents of the uploaded_file | |
print(f"Uploaded file type: {type(uploaded_file)}") | |
print(f"Uploaded file content: {uploaded_file}") | |
# Check if uploaded_file is a dictionary with 'data' key | |
if isinstance(uploaded_file, dict) and 'data' in uploaded_file: | |
pdf_bytes = uploaded_file['data'] | |
else: | |
print("Uploaded file is not in the expected format") | |
return "File content could not be retrieved", None | |
try: | |
abstract_text = extract_abstract(pdf_bytes) | |
logging.info(f"Extracted abstract: {abstract_text[:100]}...") # Log first 100 chars of abstract | |
except Exception as e: | |
logging.error(f"Error in abstract extraction: {e}") | |
return "Error in processing PDF", None | |
try: | |
inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True) | |
summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=40, min_length=10, length_penalty=2.0, early_stopping=True, no_repeat_ngram_size=2) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
speech = synthesiser(summary, forward_params={"do_sample": True}) | |
audio_data = speech["audio"].squeeze() | |
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767) | |
output_file = "temp_output.wav" | |
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data) | |
return summary, output_file | |
except Exception as e: | |
logging.error(f"Error in summary generation or TTS conversion: {e}") | |
return "Error in summary or speech generation", None | |
iface = gr.Interface( | |
fn=process_text, | |
inputs=gr.components.File(label="Upload PDF"), | |
outputs=["text", "audio"], | |
title="Summarization and Text-to-Speech", | |
description="Upload a PDF to extract, summarize its abstract, and convert to speech." | |
) | |
if __name__ == "__main__": | |
iface.launch() |