Spaces:
Running
Running
Commit
·
1842832
1
Parent(s):
8b2d29b
Update app.py
Browse files
app.py
CHANGED
@@ -28,17 +28,16 @@ def extract_abstract(pdf_bytes):
|
|
28 |
return "Error in abstract extraction"
|
29 |
|
30 |
def process_text(uploaded_file):
|
31 |
-
# Debugging: Print the type and
|
32 |
print(f"Uploaded file type: {type(uploaded_file)}")
|
33 |
-
print(f"Uploaded file
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return "Error reading PDF file", None
|
42 |
|
43 |
try:
|
44 |
abstract_text = extract_abstract(pdf_bytes)
|
@@ -48,14 +47,29 @@ def process_text(uploaded_file):
|
|
48 |
return "Error in processing PDF", None
|
49 |
|
50 |
try:
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
54 |
|
|
|
55 |
speech = synthesiser(summary, forward_params={"do_sample": True})
|
56 |
audio_data = speech["audio"].squeeze()
|
57 |
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
|
58 |
|
|
|
59 |
output_file = "temp_output.wav"
|
60 |
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data)
|
61 |
|
|
|
28 |
return "Error in abstract extraction"
|
29 |
|
30 |
def process_text(uploaded_file):
|
31 |
+
# Debugging: Print the type and contents of the uploaded_file
|
32 |
print(f"Uploaded file type: {type(uploaded_file)}")
|
33 |
+
print(f"Uploaded file content: {uploaded_file}")
|
34 |
|
35 |
+
# Check if uploaded_file is a dictionary with 'data' key
|
36 |
+
if isinstance(uploaded_file, dict) and 'data' in uploaded_file:
|
37 |
+
pdf_bytes = uploaded_file['data']
|
38 |
+
else:
|
39 |
+
print("Uploaded file is not in the expected format")
|
40 |
+
return "File content could not be retrieved", None
|
|
|
41 |
|
42 |
try:
|
43 |
abstract_text = extract_abstract(pdf_bytes)
|
|
|
47 |
return "Error in processing PDF", None
|
48 |
|
49 |
try:
|
50 |
+
# Prepare inputs for the model
|
51 |
+
inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True, padding="max_length")
|
52 |
+
|
53 |
+
# Generate summary
|
54 |
+
summary_ids = model.generate(
|
55 |
+
input_ids=inputs['input_ids'],
|
56 |
+
attention_mask=inputs['attention_mask'], # Include attention mask
|
57 |
+
pad_token_id=model.config.pad_token_id, # Include pad token id
|
58 |
+
num_beams=4,
|
59 |
+
max_length=40,
|
60 |
+
min_length=10,
|
61 |
+
length_penalty=2.0,
|
62 |
+
early_stopping=True,
|
63 |
+
no_repeat_ngram_size=2
|
64 |
+
)
|
65 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
66 |
|
67 |
+
# Convert summary to speech
|
68 |
speech = synthesiser(summary, forward_params={"do_sample": True})
|
69 |
audio_data = speech["audio"].squeeze()
|
70 |
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
|
71 |
|
72 |
+
# Save audio to temporary file
|
73 |
output_file = "temp_output.wav"
|
74 |
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data)
|
75 |
|