Spaces:
Running
Running
Commit
·
8ce4bd9
1
Parent(s):
de32dbb
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip uninstall -y tensorflow
|
2 |
+
!pip install tensorflow==2.14
|
3 |
+
|
4 |
+
!pip install --upgrade pip
|
5 |
+
!pip install --upgrade transformers scipy
|
6 |
+
|
7 |
+
!pip install transformers
|
8 |
+
!pip install pymupdf
|
9 |
+
|
10 |
+
## Summarization
|
11 |
+
import gradio as gr
|
12 |
+
import fitz # PyMuPDF
|
13 |
+
from transformers import BartTokenizer, BartForConditionalGeneration, pipeline
|
14 |
+
import scipy.io.wavfile
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
18 |
+
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
19 |
+
|
20 |
+
def extract_abstract(pdf_path):
|
21 |
+
doc = fitz.open(pdf_path)
|
22 |
+
first_page = doc[0].get_text()
|
23 |
+
start_idx = first_page.lower().find("abstract")
|
24 |
+
end_idx = first_page.lower().find("introduction")
|
25 |
+
if start_idx != -1 and end_idx != -1:
|
26 |
+
return first_page[start_idx:end_idx].strip()
|
27 |
+
else:
|
28 |
+
return "Abstract not found or '1 Introduction' not found in the first page."
|
29 |
+
|
30 |
+
# Specify the path to your PDF file
|
31 |
+
pdf_path = "/content/article11.pdf" # Update the path
|
32 |
+
|
33 |
+
# Extract the abstract
|
34 |
+
abstract_text = extract_abstract(pdf_path)
|
35 |
+
|
36 |
+
# Print the extracted abstract
|
37 |
+
print("Extracted Abstract:")
|
38 |
+
print(abstract_text)
|
39 |
+
|
40 |
+
|
41 |
+
from IPython.core.display import display, HTML
|
42 |
+
|
43 |
+
# Function to display summary and reduction percentage aesthetically
|
44 |
+
def display_results(final_summary, original_text):
|
45 |
+
reduction_percentage = 100 * (1 - len(final_summary) / len(original_text))
|
46 |
+
html_content = f"""
|
47 |
+
<div style='padding: 20px; background-color: #f3f3f3; border-radius: 10px;'>
|
48 |
+
<h2 style='color: #2c3e50; text-align: center;'>Summary</h2>
|
49 |
+
<p style='color: #34495e; font-size: 16px; text-align: justify;'>{final_summary}</p>
|
50 |
+
<p style='color: #2c3e50;'><b>Reduction in Text:</b> {reduction_percentage:.2f}%</p>
|
51 |
+
</div>
|
52 |
+
"""
|
53 |
+
display(HTML(html_content))
|
54 |
+
|
55 |
+
# Summary generation and post-processing
|
56 |
+
inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True)
|
57 |
+
max_length_for_summary = 40
|
58 |
+
length_penalty_value = 2.0
|
59 |
+
|
60 |
+
summary_ids = model.generate(inputs['input_ids'],
|
61 |
+
num_beams=4,
|
62 |
+
max_length=max_length_for_summary,
|
63 |
+
min_length=10,
|
64 |
+
length_penalty=length_penalty_value,
|
65 |
+
early_stopping=True,
|
66 |
+
no_repeat_ngram_size=2)
|
67 |
+
|
68 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
69 |
+
summary = ' '.join(summary.split()) # Remove extra spaces
|
70 |
+
|
71 |
+
# Handle truncated words and adjust periods
|
72 |
+
words = summary.split()
|
73 |
+
cleaned_summary = []
|
74 |
+
for i, word in enumerate(words):
|
75 |
+
if '-' in word and i < len(words) - 1:
|
76 |
+
word = word.replace('-', '') + words[i + 1]
|
77 |
+
words[i + 1] = ""
|
78 |
+
|
79 |
+
if '.' in word and i != len(words) - 1:
|
80 |
+
word = word.replace('.', '')
|
81 |
+
cleaned_summary.append(word + ' and')
|
82 |
+
else:
|
83 |
+
cleaned_summary.append(word)
|
84 |
+
|
85 |
+
# Capitalize first word and adjust following words
|
86 |
+
final_summary = ' '.join(cleaned_summary)
|
87 |
+
final_summary = final_summary[0].upper() + final_summary[1:]
|
88 |
+
final_summary = ' '.join(w[0].lower() + w[1:] if w.lower() != 'and' else w for w in final_summary.split())
|
89 |
+
|
90 |
+
# Displaying the results
|
91 |
+
display_results(final_summary, abstract_text)
|
92 |
+
|
93 |
+
|
94 |
+
##Text-to-Speech
|
95 |
+
|
96 |
+
# Initialize the Bark TTS pipeline
|
97 |
+
synthesiser = pipeline("text-to-speech", "suno/bark")
|
98 |
+
|
99 |
+
# Initialize the Bark TTS pipeline
|
100 |
+
synthesiser = pipeline("text-to-speech", "suno/bark")
|
101 |
+
|
102 |
+
# Convert the summarized text to speech
|
103 |
+
speech = synthesiser(final_summary, forward_params={"do_sample": True})
|
104 |
+
|
105 |
+
# Normalize the audio data
|
106 |
+
audio_data = speech["audio"].squeeze()
|
107 |
+
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
|
108 |
+
|
109 |
+
# Save the normalized audio data as a WAV file
|
110 |
+
output_file = "/content/bark_output.wav"
|
111 |
+
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data)
|
112 |
+
print(f"Audio file saved as {output_file}")
|
113 |
+
|
114 |
+
# Display an audio player widget to play the generated speech
|
115 |
+
Audio(output_file)
|
116 |
+
|
117 |
+
# Gradio Interface
|
118 |
+
iface = gr.Interface(
|
119 |
+
fn=process_text,
|
120 |
+
inputs="text",
|
121 |
+
outputs=["text", "audio"],
|
122 |
+
title="Summarization and Text-to-Speech",
|
123 |
+
description="Enter text to summarize and convert to speech."
|
124 |
+
)
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
iface.launch()
|