Spaces:
Sleeping
Sleeping
Commit
·
b178a19
1
Parent(s):
8766103
Update app.py
Browse files
app.py
CHANGED
@@ -28,34 +28,29 @@ def extract_abstract(pdf_bytes):
|
|
28 |
return "Error in abstract extraction"
|
29 |
|
30 |
def process_text(uploaded_file):
|
31 |
-
|
32 |
-
|
33 |
-
print(f"Uploaded file path: {uploaded_file}")
|
34 |
|
35 |
-
# Read PDF file from the path
|
36 |
try:
|
37 |
with open(uploaded_file, "rb") as file:
|
38 |
pdf_bytes = file.read()
|
39 |
except Exception as e:
|
40 |
-
|
41 |
return "Error reading PDF file", None
|
42 |
|
43 |
try:
|
44 |
abstract_text = extract_abstract(pdf_bytes)
|
45 |
-
logging.info(f"Extracted abstract: {abstract_text[:200]}...")
|
46 |
except Exception as e:
|
47 |
logging.error(f"Error in abstract extraction: {e}")
|
48 |
return "Error in processing PDF", None
|
49 |
|
50 |
try:
|
51 |
-
# Prepare inputs for the model
|
52 |
inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True, padding="max_length")
|
53 |
-
|
54 |
-
# Generate summary
|
55 |
summary_ids = model.generate(
|
56 |
input_ids=inputs['input_ids'],
|
57 |
-
attention_mask=inputs['attention_mask'],
|
58 |
-
pad_token_id=model.config.pad_token_id,
|
59 |
num_beams=4,
|
60 |
max_length=40,
|
61 |
min_length=10,
|
@@ -65,30 +60,27 @@ def process_text(uploaded_file):
|
|
65 |
)
|
66 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# words[i + 1] = ""
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
final_summary = ' '.join(cleaned_summary)
|
83 |
final_summary = final_summary[0].upper() + final_summary[1:]
|
84 |
final_summary = ' '.join(w[0].lower() + w[1:] if w.lower() != 'and' else w for w in final_summary.split())
|
85 |
|
86 |
-
# Convert summary to speech
|
87 |
speech = synthesiser(final_summary, forward_params={"do_sample": True})
|
88 |
audio_data = speech["audio"].squeeze()
|
89 |
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
|
90 |
|
91 |
-
# Save audio to temporary file
|
92 |
output_file = "temp_output.wav"
|
93 |
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data)
|
94 |
|
|
|
28 |
return "Error in abstract extraction"
|
29 |
|
30 |
def process_text(uploaded_file):
|
31 |
+
logging.debug(f"Uploaded file type: {type(uploaded_file)}")
|
32 |
+
logging.debug(f"Uploaded file content: {uploaded_file}")
|
|
|
33 |
|
|
|
34 |
try:
|
35 |
with open(uploaded_file, "rb") as file:
|
36 |
pdf_bytes = file.read()
|
37 |
except Exception as e:
|
38 |
+
logging.error(f"Error reading file from path: {e}")
|
39 |
return "Error reading PDF file", None
|
40 |
|
41 |
try:
|
42 |
abstract_text = extract_abstract(pdf_bytes)
|
43 |
+
logging.info(f"Extracted abstract: {abstract_text[:200]}...")
|
44 |
except Exception as e:
|
45 |
logging.error(f"Error in abstract extraction: {e}")
|
46 |
return "Error in processing PDF", None
|
47 |
|
48 |
try:
|
|
|
49 |
inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True, padding="max_length")
|
|
|
|
|
50 |
summary_ids = model.generate(
|
51 |
input_ids=inputs['input_ids'],
|
52 |
+
attention_mask=inputs['attention_mask'],
|
53 |
+
pad_token_id=model.config.pad_token_id,
|
54 |
num_beams=4,
|
55 |
max_length=40,
|
56 |
min_length=10,
|
|
|
60 |
)
|
61 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
62 |
|
63 |
+
words = summary.split()
|
64 |
+
cleaned_summary = []
|
65 |
+
for i, word in enumerate(words):
|
66 |
+
if '-' in word and i < len(words) - 1:
|
67 |
+
word = word.replace('-', '') + words[i + 1]
|
68 |
+
words[i + 1] = ""
|
|
|
69 |
|
70 |
+
if '.' in word and i != len(words) - 1:
|
71 |
+
word = word.replace('.', '')
|
72 |
+
cleaned_summary.append(word + ' and')
|
73 |
+
else:
|
74 |
+
cleaned_summary.append(word)
|
75 |
|
76 |
final_summary = ' '.join(cleaned_summary)
|
77 |
final_summary = final_summary[0].upper() + final_summary[1:]
|
78 |
final_summary = ' '.join(w[0].lower() + w[1:] if w.lower() != 'and' else w for w in final_summary.split())
|
79 |
|
|
|
80 |
speech = synthesiser(final_summary, forward_params={"do_sample": True})
|
81 |
audio_data = speech["audio"].squeeze()
|
82 |
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
|
83 |
|
|
|
84 |
output_file = "temp_output.wav"
|
85 |
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data)
|
86 |
|