# Initial installations handled separately (not in app.py) # Required imports import gradio as gr import PyMuPDF as fitz from transformers import BartTokenizer, BartForConditionalGeneration, pipeline import scipy.io.wavfile import numpy as np from IPython.display import Audio # Initialize tokenizers and models tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') synthesiser = pipeline("text-to-speech", "suno/bark") # Function to extract abstract from PDF def extract_abstract(pdf_content): doc = fitz.open("pdf", pdf_content) first_page = doc[0].get_text() start_idx = first_page.lower().find("abstract") end_idx = first_page.lower().find("introduction") if start_idx != -1 and end_idx != -1: return first_page[start_idx:end_idx].strip() else: return "Abstract not found or '1 Introduction' not found in the first page." # Function to process text (summarize and convert to speech) def process_text(pdf_content): abstract_text = extract_abstract(pdf_content) # Generate summary inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True) summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=40, min_length=10, length_penalty=2.0, early_stopping=True, no_repeat_ngram_size=2) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Convert summary to speech speech = synthesiser(summary, forward_params={"do_sample": True}) audio_data = speech["audio"].squeeze() normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767) # Save audio to temporary file output_file = "temp_output.wav" scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data) return summary, output_file # Gradio Interface iface = gr.Interface( fn=process_text, inputs=gr.inputs.File(label="Upload PDF"), outputs=["text", "audio"], title="Summarization and Text-to-Speech", description="Upload a PDF to extract, summarize its abstract, and convert to speech." ) if __name__ == "__main__": iface.launch()