|
import streamlit as st |
|
import torch |
|
import os |
|
import tempfile |
|
import time |
|
from threading import Thread |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
from langchain_community.document_loaders import PyPDFLoader, TextLoader |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.retrievers import BM25Retriever, EnsembleRetriever |
|
from langchain.schema import Document |
|
from langchain.docstore.document import Document as LangchainDocument |
|
|
|
|
|
USER_AVATAR = "π€" |
|
BOT_AVATAR = "π€" |
|
|
|
|
|
HF_TOKEN = st.secrets["HF_TOKEN"] |
|
|
|
|
|
st.set_page_config(page_title="DigiTwin RAG", page_icon="π", layout="centered") |
|
st.title("π DigiTs the Twin") |
|
|
|
|
|
with st.sidebar: |
|
st.header("π Upload Knowledge Files") |
|
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"]) |
|
hybrid_toggle = st.checkbox("π Enable Hybrid Search", value=True) |
|
clear_chat = st.button("π§Ή Clear Chat History") |
|
|
|
|
|
if "messages" not in st.session_state or clear_chat: |
|
st.session_state.messages = [] |
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
model_id = "tiiuae/falcon-7b-instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN) |
|
return tokenizer, model |
|
|
|
tokenizer, model = load_model() |
|
|
|
|
|
def process_documents(files): |
|
documents = [] |
|
for file in files: |
|
suffix = ".pdf" if file.name.endswith(".pdf") else ".txt" |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file: |
|
tmp_file.write(file.read()) |
|
tmp_file_path = tmp_file.name |
|
loader = PyPDFLoader(tmp_file_path) if suffix == ".pdf" else TextLoader(tmp_file_path) |
|
documents.extend(loader.load()) |
|
return documents |
|
|
|
def chunk_documents(documents): |
|
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) |
|
return splitter.split_documents(documents) |
|
|
|
def build_retrievers(chunks): |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
faiss_vectorstore = FAISS.from_documents(chunks, embeddings) |
|
faiss_retriever = faiss_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
bm25_retriever = BM25Retriever.from_documents([LangchainDocument(page_content=d.page_content) for d in chunks]) |
|
bm25_retriever.k = 5 |
|
return faiss_retriever, EnsembleRetriever(retrievers=[faiss_retriever, bm25_retriever], weights=[0.5, 0.5]) |
|
|
|
|
|
def build_prompt(history, context=""): |
|
conversation = "" |
|
for turn in history: |
|
role = "User" if turn["role"] == "user" else "Assistant" |
|
conversation += f"{role}: {turn['content']}\n" |
|
return ( |
|
"You are DigiTwin, an expert advisor in asset integrity, reliability, inspection, and maintenance " |
|
"of topside piping, structural, mechanical systems, floating units, pressure vessels (VII), and pressure safety devices (PSD's).\n\n" |
|
f"Context:\n{context}\n\n" |
|
f"{conversation}Assistant:" |
|
) |
|
|
|
|
|
def generate_response(prompt): |
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
generation_kwargs = dict(**inputs, streamer=streamer, max_new_tokens=300) |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
for token in streamer: |
|
yield token |
|
|
|
|
|
retriever = None |
|
if uploaded_files: |
|
with st.spinner("Processing documents..."): |
|
docs = process_documents(uploaded_files) |
|
chunks = chunk_documents(docs) |
|
faiss, hybrid = build_retrievers(chunks) |
|
retriever = hybrid if hybrid_toggle else faiss |
|
st.success("Documents processed. Ask away!") |
|
|
|
for msg in st.session_state.messages: |
|
with st.chat_message(msg["role"], avatar=USER_AVATAR if msg["role"] == "user" else BOT_AVATAR): |
|
st.markdown(msg["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Ask something based on uploaded documents..."): |
|
st.chat_message("user", avatar=USER_AVATAR).markdown(prompt) |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
context = "" |
|
if retriever: |
|
docs = retriever.get_relevant_documents(prompt) |
|
context = "\n\n".join([d.page_content for d in docs]) |
|
|
|
full_prompt = build_prompt(st.session_state.messages, context=context) |
|
|
|
with st.chat_message("assistant", avatar=BOT_AVATAR): |
|
streamer = generate_response(full_prompt) |
|
container = st.empty() |
|
answer = "" |
|
for chunk in streamer: |
|
answer += chunk |
|
container.markdown(answer + "β", unsafe_allow_html=True) |
|
container.markdown(answer) |
|
st.session_state.messages.append({"role": "assistant", "content": answer}) |
|
|