Update app.py
Browse files
app.py
CHANGED
@@ -10,21 +10,21 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.schema import Document
|
12 |
|
13 |
-
# ---
|
14 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
15 |
|
16 |
# --- Page Config ---
|
17 |
st.set_page_config(page_title="DigiTwin RAG", page_icon="π", layout="centered")
|
18 |
st.title("π DigiTs the Twin")
|
19 |
|
20 |
-
# --- Upload
|
21 |
with st.sidebar:
|
22 |
st.header("π Upload Knowledge Files")
|
23 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
24 |
if uploaded_files:
|
25 |
st.success(f"{len(uploaded_files)} file(s) uploaded")
|
26 |
|
27 |
-
# --- Model
|
28 |
@st.cache_resource
|
29 |
def load_model():
|
30 |
tokenizer = AutoTokenizer.from_pretrained("amiguel/GM_Qwen1.8B_Finetune", trust_remote_code=True, token=HF_TOKEN)
|
@@ -39,7 +39,7 @@ def load_model():
|
|
39 |
|
40 |
model, tokenizer = load_model()
|
41 |
|
42 |
-
# --- Prompt
|
43 |
SYSTEM_PROMPT = (
|
44 |
"You are DigiTwin, a digital expert and senior topside engineer specializing in inspection and maintenance "
|
45 |
"of offshore piping systems, structural elements, mechanical equipment, floating production units, pressure vessels "
|
@@ -48,7 +48,7 @@ SYSTEM_PROMPT = (
|
|
48 |
"field experience, industry regulations, and proven methodologies in asset integrity and reliability engineering."
|
49 |
)
|
50 |
|
51 |
-
|
52 |
def build_prompt(messages, context=""):
|
53 |
prompt = f"<|im_start|>system\n{SYSTEM_PROMPT}\n\nContext:\n{context}<|im_end|>\n"
|
54 |
for msg in messages:
|
@@ -57,17 +57,15 @@ def build_prompt(messages, context=""):
|
|
57 |
prompt += "<|im_start|>assistant\n"
|
58 |
return prompt
|
59 |
|
60 |
-
|
61 |
-
# --- RAG Embedding and Search ---
|
62 |
@st.cache_resource
|
63 |
def embed_uploaded_files(files):
|
64 |
raw_docs = []
|
65 |
for f in files:
|
66 |
-
|
67 |
-
with open(
|
68 |
out_file.write(f.read())
|
69 |
-
|
70 |
-
loader = PyPDFLoader(file_path) if f.name.endswith(".pdf") else TextLoader(file_path)
|
71 |
raw_docs.extend(loader.load())
|
72 |
|
73 |
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
@@ -78,7 +76,7 @@ def embed_uploaded_files(files):
|
|
78 |
|
79 |
retriever = embed_uploaded_files(uploaded_files) if uploaded_files else None
|
80 |
|
81 |
-
# --- Streaming
|
82 |
def generate_response(prompt_text):
|
83 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
84 |
inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
|
@@ -95,37 +93,56 @@ def generate_response(prompt_text):
|
|
95 |
thread.start()
|
96 |
return streamer
|
97 |
|
98 |
-
# --- Avatars
|
99 |
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
|
100 |
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
|
101 |
|
|
|
102 |
if "messages" not in st.session_state:
|
103 |
st.session_state.messages = []
|
104 |
|
|
|
105 |
for msg in st.session_state.messages:
|
106 |
-
avatar
|
107 |
-
with st.chat_message(msg["role"], avatar=avatar):
|
108 |
st.markdown(msg["content"])
|
109 |
|
110 |
-
# --- Chat
|
111 |
if prompt := st.chat_input("Ask something based on uploaded documents..."):
|
112 |
st.chat_message("user", avatar=USER_AVATAR).markdown(prompt)
|
113 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
114 |
|
115 |
context = ""
|
|
|
116 |
if retriever:
|
117 |
docs = retriever.similarity_search(prompt, k=3)
|
118 |
-
context = "\n\n".join([
|
119 |
|
120 |
-
|
|
|
|
|
121 |
|
122 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
123 |
-
|
124 |
-
streamer = generate_response(full_prompt)
|
125 |
container = st.empty()
|
126 |
answer = ""
|
127 |
-
|
|
|
128 |
answer += chunk
|
129 |
container.markdown(answer + "β", unsafe_allow_html=True)
|
130 |
container.markdown(answer)
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.schema import Document
|
12 |
|
13 |
+
# --- Hugging Face Token ---
|
14 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
15 |
|
16 |
# --- Page Config ---
|
17 |
st.set_page_config(page_title="DigiTwin RAG", page_icon="π", layout="centered")
|
18 |
st.title("π DigiTs the Twin")
|
19 |
|
20 |
+
# --- File Upload UI ---
|
21 |
with st.sidebar:
|
22 |
st.header("π Upload Knowledge Files")
|
23 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
24 |
if uploaded_files:
|
25 |
st.success(f"{len(uploaded_files)} file(s) uploaded")
|
26 |
|
27 |
+
# --- Load Model & Tokenizer ---
|
28 |
@st.cache_resource
|
29 |
def load_model():
|
30 |
tokenizer = AutoTokenizer.from_pretrained("amiguel/GM_Qwen1.8B_Finetune", trust_remote_code=True, token=HF_TOKEN)
|
|
|
39 |
|
40 |
model, tokenizer = load_model()
|
41 |
|
42 |
+
# --- System Prompt ---
|
43 |
SYSTEM_PROMPT = (
|
44 |
"You are DigiTwin, a digital expert and senior topside engineer specializing in inspection and maintenance "
|
45 |
"of offshore piping systems, structural elements, mechanical equipment, floating production units, pressure vessels "
|
|
|
48 |
"field experience, industry regulations, and proven methodologies in asset integrity and reliability engineering."
|
49 |
)
|
50 |
|
51 |
+
# --- Prompt Builder ---
|
52 |
def build_prompt(messages, context=""):
|
53 |
prompt = f"<|im_start|>system\n{SYSTEM_PROMPT}\n\nContext:\n{context}<|im_end|>\n"
|
54 |
for msg in messages:
|
|
|
57 |
prompt += "<|im_start|>assistant\n"
|
58 |
return prompt
|
59 |
|
60 |
+
# --- Embed Uploaded Documents ---
|
|
|
61 |
@st.cache_resource
|
62 |
def embed_uploaded_files(files):
|
63 |
raw_docs = []
|
64 |
for f in files:
|
65 |
+
path = f"/tmp/{f.name}"
|
66 |
+
with open(path, "wb") as out_file:
|
67 |
out_file.write(f.read())
|
68 |
+
loader = PyPDFLoader(path) if f.name.endswith(".pdf") else TextLoader(path)
|
|
|
69 |
raw_docs.extend(loader.load())
|
70 |
|
71 |
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
|
|
76 |
|
77 |
retriever = embed_uploaded_files(uploaded_files) if uploaded_files else None
|
78 |
|
79 |
+
# --- Streaming Generator ---
|
80 |
def generate_response(prompt_text):
|
81 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
82 |
inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
|
|
|
93 |
thread.start()
|
94 |
return streamer
|
95 |
|
96 |
+
# --- Avatars ---
|
97 |
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
|
98 |
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
|
99 |
|
100 |
+
# --- Initialize Chat Memory ---
|
101 |
if "messages" not in st.session_state:
|
102 |
st.session_state.messages = []
|
103 |
|
104 |
+
# --- Display Message History ---
|
105 |
for msg in st.session_state.messages:
|
106 |
+
with st.chat_message(msg["role"], avatar=USER_AVATAR if msg["role"] == "user" else BOT_AVATAR):
|
|
|
107 |
st.markdown(msg["content"])
|
108 |
|
109 |
+
# --- Chat Interface ---
|
110 |
if prompt := st.chat_input("Ask something based on uploaded documents..."):
|
111 |
st.chat_message("user", avatar=USER_AVATAR).markdown(prompt)
|
112 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
113 |
|
114 |
context = ""
|
115 |
+
docs = []
|
116 |
if retriever:
|
117 |
docs = retriever.similarity_search(prompt, k=3)
|
118 |
+
context = "\n\n".join([doc.page_content for doc in docs])
|
119 |
|
120 |
+
# Limit to last 6 messages for memory
|
121 |
+
recent_messages = st.session_state.messages[-6:]
|
122 |
+
full_prompt = build_prompt(recent_messages, context)
|
123 |
|
124 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
125 |
+
start = time.time()
|
|
|
126 |
container = st.empty()
|
127 |
answer = ""
|
128 |
+
|
129 |
+
for chunk in generate_response(full_prompt):
|
130 |
answer += chunk
|
131 |
container.markdown(answer + "β", unsafe_allow_html=True)
|
132 |
container.markdown(answer)
|
133 |
+
|
134 |
+
end = time.time()
|
135 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
136 |
+
|
137 |
+
input_tokens = len(tokenizer(full_prompt)["input_ids"])
|
138 |
+
output_tokens = len(tokenizer(answer)["input_ids"])
|
139 |
+
speed = output_tokens / (end - start)
|
140 |
+
|
141 |
+
with st.expander("π Debug Info"):
|
142 |
+
st.caption(
|
143 |
+
f"π Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
|
144 |
+
f"π Speed: {speed:.1f} tokens/sec"
|
145 |
+
)
|
146 |
+
for i, doc in enumerate(docs):
|
147 |
+
st.markdown(f"**Chunk #{i+1}**")
|
148 |
+
st.code(doc.page_content.strip()[:500])
|