Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import os
|
@@ -8,7 +9,10 @@ from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
from langchain.vectorstores import FAISS
|
|
|
|
|
11 |
from langchain.schema import Document
|
|
|
12 |
|
13 |
# --- HF Token ---
|
14 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
@@ -21,111 +25,83 @@ st.title("π DigiTs the Twin")
|
|
21 |
with st.sidebar:
|
22 |
st.header("π Upload Knowledge Files")
|
23 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
24 |
-
|
25 |
-
st.success(f"{len(uploaded_files)} file(s) uploaded")
|
26 |
|
27 |
# --- Model Loading ---
|
28 |
@st.cache_resource
|
29 |
def load_model():
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
for msg in messages:
|
55 |
-
role = msg["role"]
|
56 |
-
prompt += f"<|im_start|>{role}\n{msg['content']}<|im_end|>\n"
|
57 |
-
prompt += "<|im_start|>assistant\n"
|
58 |
-
return prompt
|
59 |
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
file_path = f"/tmp/{f.name}"
|
67 |
-
with open(file_path, "wb") as out_file:
|
68 |
-
out_file.write(f.read())
|
69 |
-
|
70 |
-
loader = PyPDFLoader(file_path) if f.name.endswith(".pdf") else TextLoader(file_path)
|
71 |
-
raw_docs.extend(loader.load())
|
72 |
-
|
73 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
74 |
-
chunks = splitter.split_documents(raw_docs)
|
75 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
76 |
-
db = FAISS.from_documents(chunks, embedding=embeddings)
|
77 |
-
return db
|
78 |
-
|
79 |
-
retriever = embed_uploaded_files(uploaded_files) if uploaded_files else None
|
80 |
|
81 |
-
# --- Streaming Response ---
|
82 |
-
def generate_response(prompt_text):
|
83 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
84 |
-
inputs = tokenizer(
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
"max_new_tokens": 1024,
|
89 |
-
"temperature": 0.7,
|
90 |
-
"top_p": 0.9,
|
91 |
-
"repetition_penalty": 1.1,
|
92 |
-
"do_sample": True,
|
93 |
-
"streamer": streamer
|
94 |
-
})
|
95 |
thread.start()
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
st.
|
109 |
-
|
110 |
-
|
111 |
-
if
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
full_prompt = build_prompt(st.session_state.messages, context=context)
|
121 |
-
|
122 |
-
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
123 |
-
start_time = time.time()
|
124 |
-
streamer = generate_response(full_prompt)
|
125 |
-
container = st.empty()
|
126 |
-
answer = ""
|
127 |
-
for chunk in streamer:
|
128 |
-
answer += chunk
|
129 |
-
container.markdown(answer + "β", unsafe_allow_html=True)
|
130 |
-
container.markdown(answer)
|
131 |
-
st.session_state.messages.append({"role": "assistant", "content": answer})
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
import os
|
|
|
9 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.vectorstores import FAISS
|
12 |
+
from langchain.retrievers import BM25Retriever
|
13 |
+
from langchain.retrievers import EnsembleRetriever
|
14 |
from langchain.schema import Document
|
15 |
+
from langchain.docstore.document import Document as LangchainDocument
|
16 |
|
17 |
# --- HF Token ---
|
18 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
|
|
25 |
with st.sidebar:
|
26 |
st.header("π Upload Knowledge Files")
|
27 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
28 |
+
hybrid_toggle = st.checkbox("π Enable Hybrid Search", value=True)
|
|
|
29 |
|
30 |
# --- Model Loading ---
|
31 |
@st.cache_resource
|
32 |
def load_model():
|
33 |
+
model_id = "tiiuae/falcon-7b-instruct"
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
|
36 |
+
return tokenizer, model
|
37 |
+
|
38 |
+
tokenizer, model = load_model()
|
39 |
+
|
40 |
+
# --- Document Processing ---
|
41 |
+
def process_documents(files):
|
42 |
+
documents = []
|
43 |
+
for file in files:
|
44 |
+
if file.name.endswith(".pdf"):
|
45 |
+
loader = PyPDFLoader(file)
|
46 |
+
else:
|
47 |
+
loader = TextLoader(file)
|
48 |
+
docs = loader.load()
|
49 |
+
documents.extend(docs)
|
50 |
+
return documents
|
51 |
+
|
52 |
+
def chunk_documents(documents):
|
53 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
54 |
+
return splitter.split_documents(documents)
|
55 |
+
|
56 |
+
# --- Embedding and Retrieval ---
|
57 |
+
def build_retrievers(chunks):
|
58 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
59 |
+
faiss_vectorstore = FAISS.from_documents(chunks, embeddings)
|
60 |
+
faiss_retriever = faiss_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
61 |
|
62 |
+
bm25_retriever = BM25Retriever.from_documents([LangchainDocument(page_content=d.page_content) for d in chunks])
|
63 |
+
bm25_retriever.k = 5
|
64 |
|
65 |
+
ensemble = EnsembleRetriever(retrievers=[faiss_retriever, bm25_retriever], weights=[0.5, 0.5])
|
66 |
+
return faiss_retriever, ensemble
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# --- Inference ---
|
69 |
+
def generate_answer(query, retriever):
|
70 |
+
docs = retriever.get_relevant_documents(query)
|
71 |
+
context = "\n".join([doc.page_content for doc in docs])
|
72 |
|
73 |
+
system_prompt = (
|
74 |
+
"You are DigiTwin, an expert advisor in asset integrity, reliability, inspection, and maintenance "
|
75 |
+
"of topside piping, structural, mechanical systems, floating units, pressure vessels (VII), and pressure safety devices (PSD's). "
|
76 |
+
"Use the context below to answer professionally.\n\nContext:\n" + context + "\n\nQuery: " + query + "\nAnswer:"
|
77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
|
|
79 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
80 |
+
inputs = tokenizer(system_prompt, return_tensors="pt").to(model.device)
|
81 |
+
generation_kwargs = dict(**inputs, streamer=streamer, max_new_tokens=300)
|
82 |
+
|
83 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
thread.start()
|
85 |
+
|
86 |
+
answer = ""
|
87 |
+
for token in streamer:
|
88 |
+
answer += token
|
89 |
+
yield answer
|
90 |
+
|
91 |
+
# --- Main App ---
|
92 |
+
if uploaded_files:
|
93 |
+
with st.spinner("Processing documents..."):
|
94 |
+
docs = process_documents(uploaded_files)
|
95 |
+
chunks = chunk_documents(docs)
|
96 |
+
faiss_retriever, hybrid_retriever = build_retrievers(chunks)
|
97 |
+
st.success("Documents processed successfully.")
|
98 |
+
|
99 |
+
query = st.text_input("π Ask a question based on the uploaded documents")
|
100 |
+
if query:
|
101 |
+
st.subheader("π€ Answer")
|
102 |
+
retriever = hybrid_retriever if hybrid_toggle else faiss_retriever
|
103 |
+
response_placeholder = st.empty()
|
104 |
+
full_response = ""
|
105 |
+
for partial_response in generate_answer(query, retriever):
|
106 |
+
full_response = partial_response
|
107 |
+
response_placeholder.markdown(full_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|