amiguel commited on
Commit
05e25f7
Β·
verified Β·
1 Parent(s): 31c383d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -140
app.py CHANGED
@@ -1,137 +1,58 @@
1
  import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
3
- from huggingface_hub import login
4
- from threading import Thread
5
- import PyPDF2
6
- import pandas as pd
7
  import torch
8
  import time
9
  import os
10
- from transformers import AutoModelForMaskedLM
11
-
12
-
13
- # Check if 'peft' is installed
14
- try:
15
- from peft import PeftModel, PeftConfig
16
- except ImportError:
17
- raise ImportError(
18
- "The 'peft' library is required but not installed. "
19
- "Please install it using: `pip install peft`"
20
- )
21
-
22
- # πŸ” Hardcoded Hugging Face Token
23
 
24
- HF_TOKEN = os.environ.get("HF_TOKEN") # Replace with your actual token
 
25
 
26
- # Set page configuration
27
  st.set_page_config(
28
- page_title="Assistente LGT | Angola",
29
  page_icon="πŸš€",
30
  layout="centered"
31
  )
32
 
33
- # Model base and options
34
- BASE_MODEL_NAME = "NousResearch/Nous-Hermes-2-Mistral-7B-DPO" #"neuralmind/bert-base-portuguese-cased" #"pierreguillou/gpt2-small-portuguese" #"unicamp-dl/ptt5-base-portuguese-vocab" #"mistralai/Mistral-7B-Instruct-v0.2"
35
- MODEL_OPTIONS = {
36
- "Full Fine-Tuned": "amiguel/GM_finetune", #"amiguel/mistral-angolan-laborlaw-bert-base-pt", #"amiguel/mistral-angolan-laborlaw-gpt2",#"amiguel/mistral-angolan-laborlaw-ptt5", #"amiguel/mistral-angolan-laborlaw",
37
- "LoRA Adapter": "amiguel/SmolLM2-360M-concise-reasoning-lora",
38
- "QLoRA Adapter": "amiguel/SmolLM2-360M-concise-reasoning-qlora"
39
- }
40
-
41
- st.title("πŸš€ Assistente | Angola πŸš€")
42
 
 
43
  USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
44
  BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
45
 
46
- # Sidebar
47
- with st.sidebar:
48
- st.header("Model Selection πŸ€–")
49
- model_type = st.selectbox("Choose Model Type", list(MODEL_OPTIONS.keys()), index=0)
50
- selected_model = MODEL_OPTIONS[model_type]
51
-
52
- st.header("Upload Documents πŸ“‚")
53
- uploaded_file = st.file_uploader(
54
- "Choose a PDF or XLSX file",
55
- type=["pdf", "xlsx"],
56
- label_visibility="collapsed"
 
57
  )
 
 
 
58
 
59
  # Session state
60
  if "messages" not in st.session_state:
61
  st.session_state.messages = []
62
 
63
- # File processor
64
- @st.cache_data
65
- def process_file(uploaded_file):
66
- if uploaded_file is None:
67
- return ""
68
-
69
- try:
70
- if uploaded_file.type == "application/pdf":
71
- pdf_reader = PyPDF2.PdfReader(uploaded_file)
72
- return "\n".join([page.extract_text() for page in pdf_reader.pages])
73
- elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
74
- df = pd.read_excel(uploaded_file)
75
- return df.to_markdown()
76
- except Exception as e:
77
- st.error(f"πŸ“„ Error processing file: {str(e)}")
78
- return ""
79
-
80
- # Model loader
81
- @st.cache_resource
82
- def load_model(model_type, selected_model):
83
- try:
84
- login(token=HF_TOKEN)
85
-
86
- tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME, token=HF_TOKEN)
87
-
88
- if model_type == "Full Fine-Tuned":
89
-
90
- model = AutoModelForMaskedLM.from_pretrained(
91
- selected_model,
92
- torch_dtype=torch.bfloat16, # or float32 for compatibility
93
- token=HF_TOKEN
94
- ).to("cuda" if torch.cuda.is_available() else "cpu")
95
-
96
- #model = AutoModelForCausalLM.from_pretrained(
97
- #selected_model,
98
- # torch_dtype=torch.bfloat16,
99
- # device_map="auto",
100
- # token=HF_TOKEN
101
- #
102
-
103
- else:
104
- base_model = AutoModelForCausalLM.from_pretrained(
105
- BASE_MODEL_NAME,
106
- torch_dtype=torch.bfloat16,
107
- device_map="auto",
108
- token=HF_TOKEN
109
- )
110
- model = PeftModel.from_pretrained(
111
- base_model,
112
- selected_model,
113
- torch_dtype=torch.bfloat16,
114
- is_trainable=False,
115
- token=HF_TOKEN
116
- )
117
- return model, tokenizer
118
-
119
- except Exception as e:
120
- st.error(f"πŸ€– Model loading failed: {str(e)}")
121
- return None
122
-
123
- # Generation function
124
- def generate_with_kv_cache(prompt, file_context, model, tokenizer, use_cache=True):
125
- full_prompt = f"Analyze this context:\n{file_context}\n\nQuestion: {prompt}\nAnswer:"
126
-
127
  streamer = TextIteratorStreamer(
128
- tokenizer,
129
- skip_prompt=True,
130
  skip_special_tokens=True
131
  )
132
-
133
- inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
134
-
135
  generation_kwargs = {
136
  "input_ids": inputs["input_ids"],
137
  "attention_mask": inputs["attention_mask"],
@@ -140,11 +61,11 @@ def generate_with_kv_cache(prompt, file_context, model, tokenizer, use_cache=Tru
140
  "top_p": 0.9,
141
  "repetition_penalty": 1.1,
142
  "do_sample": True,
143
- "use_cache": use_cache,
144
  "streamer": streamer
145
  }
146
-
147
- Thread(target=model.generate, kwargs=generation_kwargs).start()
 
148
  return streamer
149
 
150
  # Display chat history
@@ -153,40 +74,26 @@ for message in st.session_state.messages:
153
  with st.chat_message(message["role"], avatar=avatar):
154
  st.markdown(message["content"])
155
 
156
- # Prompt interaction
157
- if prompt := st.chat_input("Ask your inspection question..."):
158
-
159
- # Load model if necessary
160
- if "model" not in st.session_state or st.session_state.get("model_type") != model_type:
161
- model_data = load_model(model_type, selected_model)
162
- if model_data is None:
163
- st.error("Failed to load model.")
164
- st.stop()
165
-
166
- st.session_state.model, st.session_state.tokenizer = model_data
167
- st.session_state.model_type = model_type
168
-
169
- model = st.session_state.model
170
- tokenizer = st.session_state.tokenizer
171
 
 
172
  with st.chat_message("user", avatar=USER_AVATAR):
173
  st.markdown(prompt)
174
  st.session_state.messages.append({"role": "user", "content": prompt})
175
 
176
- file_context = process_file(uploaded_file)
177
-
178
  if model and tokenizer:
179
  try:
180
  with st.chat_message("assistant", avatar=BOT_AVATAR):
181
  start_time = time.time()
182
- streamer = generate_with_kv_cache(prompt, file_context, model, tokenizer, use_cache=True)
183
 
184
  response_container = st.empty()
185
  full_response = ""
186
 
187
  for chunk in streamer:
188
- cleaned_chunk = chunk.replace("<think>", "").replace("</think>", "").strip()
189
- full_response += cleaned_chunk + " "
190
  response_container.markdown(full_response + "β–Œ", unsafe_allow_html=True)
191
 
192
  end_time = time.time()
@@ -194,15 +101,9 @@ if prompt := st.chat_input("Ask your inspection question..."):
194
  output_tokens = len(tokenizer(full_response)["input_ids"])
195
  speed = output_tokens / (end_time - start_time)
196
 
197
- input_cost = (input_tokens / 1_000_000) * 5
198
- output_cost = (output_tokens / 1_000_000) * 15
199
- total_cost_usd = input_cost + output_cost
200
- total_cost_aoa = total_cost_usd * 1160
201
-
202
  st.caption(
203
  f"πŸ”‘ Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
204
- f"πŸ•’ Speed: {speed:.1f}t/s | πŸ’° Cost (USD): ${total_cost_usd:.4f} | "
205
- f"πŸ’΅ Cost (AOA): {total_cost_aoa:.4f}"
206
  )
207
 
208
  response_container.markdown(full_response)
 
1
  import streamlit as st
 
 
 
 
 
2
  import torch
3
  import time
4
  import os
5
+ from threading import Thread
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
7
+ from huggingface_hub import login
 
 
 
 
 
 
 
 
 
 
8
 
9
+ # Hardcoded Hugging Face Token
10
+ HF_TOKEN = os.environ.get("HF_TOKEN") # or directly "hf_xxxxxx"
11
 
12
+ # App config
13
  st.set_page_config(
14
+ page_title="GM Fine-tune Assistant πŸš€",
15
  page_icon="πŸš€",
16
  layout="centered"
17
  )
18
 
19
+ st.title("πŸš€ GM Fine-tune Assistant πŸš€")
 
 
 
 
 
 
 
 
20
 
21
+ # Avatars
22
  USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
23
  BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
24
 
25
+ # Login to Huggingface
26
+ login(token=HF_TOKEN)
27
+
28
+ # Load Model
29
+ @st.cache_resource
30
+ def load_model():
31
+ tokenizer = AutoTokenizer.from_pretrained("amiguel/GM_finetune", token=HF_TOKEN)
32
+ model = AutoModelForCausalLM.from_pretrained(
33
+ "amiguel/GM_finetune",
34
+ device_map="auto",
35
+ torch_dtype=torch.bfloat16,
36
+ token=HF_TOKEN
37
  )
38
+ return model, tokenizer
39
+
40
+ model, tokenizer = load_model()
41
 
42
  # Session state
43
  if "messages" not in st.session_state:
44
  st.session_state.messages = []
45
 
46
+ # Streamer
47
+ def generate_response(prompt, model, tokenizer):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  streamer = TextIteratorStreamer(
49
+ tokenizer,
50
+ skip_prompt=True,
51
  skip_special_tokens=True
52
  )
53
+
54
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
55
+
56
  generation_kwargs = {
57
  "input_ids": inputs["input_ids"],
58
  "attention_mask": inputs["attention_mask"],
 
61
  "top_p": 0.9,
62
  "repetition_penalty": 1.1,
63
  "do_sample": True,
 
64
  "streamer": streamer
65
  }
66
+
67
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
68
+ thread.start()
69
  return streamer
70
 
71
  # Display chat history
 
74
  with st.chat_message(message["role"], avatar=avatar):
75
  st.markdown(message["content"])
76
 
77
+ # Chat input
78
+ if prompt := st.chat_input("Ask me anything about General Knowledge..."):
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ # Display user message
81
  with st.chat_message("user", avatar=USER_AVATAR):
82
  st.markdown(prompt)
83
  st.session_state.messages.append({"role": "user", "content": prompt})
84
 
85
+ # Bot generating response
 
86
  if model and tokenizer:
87
  try:
88
  with st.chat_message("assistant", avatar=BOT_AVATAR):
89
  start_time = time.time()
90
+ streamer = generate_response(prompt, model, tokenizer)
91
 
92
  response_container = st.empty()
93
  full_response = ""
94
 
95
  for chunk in streamer:
96
+ full_response += chunk
 
97
  response_container.markdown(full_response + "β–Œ", unsafe_allow_html=True)
98
 
99
  end_time = time.time()
 
101
  output_tokens = len(tokenizer(full_response)["input_ids"])
102
  speed = output_tokens / (end_time - start_time)
103
 
 
 
 
 
 
104
  st.caption(
105
  f"πŸ”‘ Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
106
+ f"πŸ•’ Speed: {speed:.1f} tokens/sec"
 
107
  )
108
 
109
  response_container.markdown(full_response)