|
import streamlit as st |
|
import torch |
|
import os |
|
import tempfile |
|
import time |
|
from threading import Thread |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
from langchain_community.document_loaders import PyPDFLoader, TextLoader |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.retrievers import BM25Retriever, EnsembleRetriever |
|
from langchain.schema import Document |
|
from langchain.docstore.document import Document as LangchainDocument |
|
|
|
|
|
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png" |
|
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg" |
|
|
|
|
|
HF_TOKEN = st.secrets["HF_TOKEN"] |
|
|
|
|
|
st.set_page_config(page_title="Hybrid RAG Chat", page_icon="π€", layout="centered") |
|
st.title("π€ DigiTwin Streaming") |
|
|
|
|
|
with st.sidebar: |
|
st.header("π€ Upload Documents") |
|
uploaded_files = st.file_uploader("PDFs or .txt files only", type=["pdf", "txt"], accept_multiple_files=True) |
|
max_tokens = st.slider("π§ Max Response Tokens", 100, 2048, 512, step=50) |
|
clear_chat = st.button("π§Ή Clear Conversation") |
|
|
|
|
|
if "messages" not in st.session_state or clear_chat: |
|
st.session_state.messages = [] |
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
model_id = "amiguel/GM_Qwen1.8B_Finetune" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN) |
|
return tokenizer, model |
|
|
|
tokenizer, model = load_model() |
|
|
|
|
|
def process_documents(files): |
|
documents = [] |
|
for file in files: |
|
suffix = ".pdf" if file.name.endswith(".pdf") else ".txt" |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp: |
|
tmp.write(file.read()) |
|
path = tmp.name |
|
loader = PyPDFLoader(path) if suffix == ".pdf" else TextLoader(path) |
|
documents.extend(loader.load()) |
|
return documents |
|
|
|
def chunk_documents(docs): |
|
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) |
|
return splitter.split_documents(docs) |
|
|
|
def build_hybrid_retriever(chunks): |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
faiss = FAISS.from_documents(chunks, embeddings) |
|
faiss_ret = faiss.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
bm25 = BM25Retriever.from_documents([LangchainDocument(page_content=c.page_content) for c in chunks]) |
|
bm25.k = 5 |
|
return EnsembleRetriever(retrievers=[faiss_ret, bm25], weights=[0.5, 0.5]) |
|
|
|
|
|
def build_prompt(history, context=""): |
|
dialog = "" |
|
for msg in history: |
|
role = "User" if msg["role"] == "user" else "Assistant" |
|
dialog += f"{role}: {msg['content']}\n" |
|
return f"""You are DigiTwin, a highly professional and experienced assistant in inspection, integrity, and maintenance of topside equipment, piping systems, pressure vessels, structures, and safety systems. Use the following context to provide expert-level answers. |
|
|
|
Context: |
|
{context} |
|
|
|
{dialog} |
|
Assistant:""" |
|
|
|
|
|
def generate_response(prompt, max_tokens): |
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
Thread(target=model.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_tokens}).start() |
|
output = "" |
|
for token in streamer: |
|
output += token |
|
yield output |
|
|
|
|
|
retriever = None |
|
if uploaded_files: |
|
with st.spinner("π Indexing documents..."): |
|
docs = process_documents(uploaded_files) |
|
chunks = chunk_documents(docs) |
|
retriever = build_hybrid_retriever(chunks) |
|
st.success("β
Documents ready for hybrid search.") |
|
|
|
|
|
for msg in st.session_state.messages: |
|
with st.chat_message(msg["role"], avatar=USER_AVATAR if msg["role"] == "user" else BOT_AVATAR): |
|
st.markdown(msg["content"]) |
|
|
|
|
|
if query := st.chat_input("Ask DigiTwin anything..."): |
|
st.chat_message("user", avatar=USER_AVATAR).markdown(query) |
|
st.session_state.messages.append({"role": "user", "content": query}) |
|
|
|
context = "" |
|
matched_chunks = [] |
|
if retriever: |
|
matched_chunks = retriever.get_relevant_documents(query) |
|
context = "\n\n".join([doc.page_content for doc in matched_chunks]) |
|
|
|
full_prompt = build_prompt(st.session_state.messages, context) |
|
|
|
with st.chat_message("assistant", avatar=BOT_AVATAR): |
|
start_time = time.time() |
|
container = st.empty() |
|
answer = "" |
|
|
|
for chunk in generate_response(full_prompt, max_tokens): |
|
answer = chunk |
|
container.markdown(answer + "β", unsafe_allow_html=True) |
|
container.markdown(answer) |
|
|
|
end_time = time.time() |
|
input_tokens = len(tokenizer(full_prompt)["input_ids"]) |
|
output_tokens = len(tokenizer(answer)["input_ids"]) |
|
speed = output_tokens / (end_time - start_time) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": answer}) |
|
|
|
|
|
with st.expander("π Response Stats & RAG Debug"): |
|
st.caption( |
|
f"π Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | " |
|
f"π Speed: {speed:.1f} tokens/sec" |
|
) |
|
for i, doc in enumerate(matched_chunks): |
|
score = getattr(doc, "score", None) |
|
metadata = doc.metadata if hasattr(doc, "metadata") else {} |
|
st.markdown(f"**Chunk #{i+1}**") |
|
st.code(doc.page_content.strip()[:500]) |
|
st.text(f"π Similarity Score: {score if score else 'N/A'} | Metadata: {metadata}") |
|
|