Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import torch
|
3 |
import os
|
4 |
import tempfile
|
|
|
5 |
from threading import Thread
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
7 |
from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
@@ -21,12 +22,13 @@ HF_TOKEN = st.secrets["HF_TOKEN"]
|
|
21 |
|
22 |
# --- Page Setup ---
|
23 |
st.set_page_config(page_title="Hybrid RAG Chat", page_icon="π€", layout="centered")
|
24 |
-
st.title("π€ DigiTwin
|
25 |
|
26 |
# --- Sidebar Upload ---
|
27 |
with st.sidebar:
|
28 |
st.header("π€ Upload Documents")
|
29 |
uploaded_files = st.file_uploader("PDFs or .txt files only", type=["pdf", "txt"], accept_multiple_files=True)
|
|
|
30 |
clear_chat = st.button("π§Ή Clear Conversation")
|
31 |
|
32 |
# --- Chat Memory ---
|
@@ -36,7 +38,7 @@ if "messages" not in st.session_state or clear_chat:
|
|
36 |
# --- Load LLM ---
|
37 |
@st.cache_resource
|
38 |
def load_model():
|
39 |
-
model_id = "
|
40 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
41 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
|
42 |
return tokenizer, model
|
@@ -73,9 +75,7 @@ def build_prompt(history, context=""):
|
|
73 |
for msg in history:
|
74 |
role = "User" if msg["role"] == "user" else "Assistant"
|
75 |
dialog += f"{role}: {msg['content']}\n"
|
76 |
-
return f"""You are DigiTwin, a highly professional and experienced assistant in inspection, integrity, and maintenance of topside equipment, piping systems, pressure vessels, structures, and safety systems.
|
77 |
-
|
78 |
-
Use the following context to provide expert-level answers.
|
79 |
|
80 |
Context:
|
81 |
{context}
|
@@ -84,10 +84,10 @@ Context:
|
|
84 |
Assistant:"""
|
85 |
|
86 |
# --- Response Generator ---
|
87 |
-
def generate_response(prompt):
|
88 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
89 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
90 |
-
Thread(target=model.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens":
|
91 |
output = ""
|
92 |
for token in streamer:
|
93 |
output += token
|
@@ -113,17 +113,39 @@ if query := st.chat_input("Ask DigiTwin anything..."):
|
|
113 |
st.session_state.messages.append({"role": "user", "content": query})
|
114 |
|
115 |
context = ""
|
|
|
116 |
if retriever:
|
117 |
-
|
118 |
-
context = "\n\n".join([doc.page_content for doc in
|
119 |
|
120 |
full_prompt = build_prompt(st.session_state.messages, context)
|
121 |
|
122 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
|
|
123 |
container = st.empty()
|
124 |
answer = ""
|
125 |
-
|
|
|
126 |
answer = chunk
|
127 |
container.markdown(answer + "β", unsafe_allow_html=True)
|
128 |
container.markdown(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
import tempfile
|
5 |
+
import time
|
6 |
from threading import Thread
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
8 |
from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
|
|
22 |
|
23 |
# --- Page Setup ---
|
24 |
st.set_page_config(page_title="Hybrid RAG Chat", page_icon="π€", layout="centered")
|
25 |
+
st.title("π€ DigiTwin Streaming")
|
26 |
|
27 |
# --- Sidebar Upload ---
|
28 |
with st.sidebar:
|
29 |
st.header("π€ Upload Documents")
|
30 |
uploaded_files = st.file_uploader("PDFs or .txt files only", type=["pdf", "txt"], accept_multiple_files=True)
|
31 |
+
max_tokens = st.slider("π§ Max Response Tokens", 100, 2048, 512, step=50)
|
32 |
clear_chat = st.button("π§Ή Clear Conversation")
|
33 |
|
34 |
# --- Chat Memory ---
|
|
|
38 |
# --- Load LLM ---
|
39 |
@st.cache_resource
|
40 |
def load_model():
|
41 |
+
model_id = "tiiuae/falcon-7b-instruct"
|
42 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
43 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
|
44 |
return tokenizer, model
|
|
|
75 |
for msg in history:
|
76 |
role = "User" if msg["role"] == "user" else "Assistant"
|
77 |
dialog += f"{role}: {msg['content']}\n"
|
78 |
+
return f"""You are DigiTwin, a highly professional and experienced assistant in inspection, integrity, and maintenance of topside equipment, piping systems, pressure vessels, structures, and safety systems. Use the following context to provide expert-level answers.
|
|
|
|
|
79 |
|
80 |
Context:
|
81 |
{context}
|
|
|
84 |
Assistant:"""
|
85 |
|
86 |
# --- Response Generator ---
|
87 |
+
def generate_response(prompt, max_tokens):
|
88 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
89 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
90 |
+
Thread(target=model.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_tokens}).start()
|
91 |
output = ""
|
92 |
for token in streamer:
|
93 |
output += token
|
|
|
113 |
st.session_state.messages.append({"role": "user", "content": query})
|
114 |
|
115 |
context = ""
|
116 |
+
matched_chunks = []
|
117 |
if retriever:
|
118 |
+
matched_chunks = retriever.get_relevant_documents(query)
|
119 |
+
context = "\n\n".join([doc.page_content for doc in matched_chunks])
|
120 |
|
121 |
full_prompt = build_prompt(st.session_state.messages, context)
|
122 |
|
123 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
124 |
+
start_time = time.time()
|
125 |
container = st.empty()
|
126 |
answer = ""
|
127 |
+
|
128 |
+
for chunk in generate_response(full_prompt, max_tokens):
|
129 |
answer = chunk
|
130 |
container.markdown(answer + "β", unsafe_allow_html=True)
|
131 |
container.markdown(answer)
|
132 |
+
|
133 |
+
end_time = time.time()
|
134 |
+
input_tokens = len(tokenizer(full_prompt)["input_ids"])
|
135 |
+
output_tokens = len(tokenizer(answer)["input_ids"])
|
136 |
+
speed = output_tokens / (end_time - start_time)
|
137 |
+
|
138 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
139 |
+
|
140 |
+
# RAG Debug Info
|
141 |
+
with st.expander("π Response Stats & RAG Debug"):
|
142 |
+
st.caption(
|
143 |
+
f"π Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
|
144 |
+
f"π Speed: {speed:.1f} tokens/sec"
|
145 |
+
)
|
146 |
+
for i, doc in enumerate(matched_chunks):
|
147 |
+
score = getattr(doc, "score", None)
|
148 |
+
metadata = doc.metadata if hasattr(doc, "metadata") else {}
|
149 |
+
st.markdown(f"**Chunk #{i+1}**")
|
150 |
+
st.code(doc.page_content.strip()[:500])
|
151 |
+
st.text(f"π Similarity Score: {score if score else 'N/A'} | Metadata: {metadata}")
|