Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
4 |
|
5 |
# Load the dataset
|
6 |
dataset = load_dataset("json", data_files="dataset.jsonl")
|
@@ -12,29 +12,48 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
12 |
|
13 |
# Tokenize the dataset
|
14 |
def tokenize_function(examples):
|
15 |
-
return tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
# Define training arguments
|
20 |
training_args = TrainingArguments(
|
21 |
output_dir="./results",
|
22 |
-
|
23 |
-
|
24 |
-
learning_rate=5e-5,
|
25 |
-
per_device_train_batch_size=2,
|
26 |
num_train_epochs=3,
|
27 |
-
save_strategy="epoch",
|
28 |
logging_dir="./logs",
|
29 |
-
logging_strategy="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
31 |
|
32 |
-
# Trainer setup
|
33 |
trainer = Trainer(
|
34 |
model=model,
|
35 |
args=training_args,
|
36 |
train_dataset=tokenized_dataset["train"],
|
37 |
eval_dataset=tokenized_dataset["train"],
|
|
|
38 |
)
|
39 |
|
40 |
# Train the model
|
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq
|
4 |
|
5 |
# Load the dataset
|
6 |
dataset = load_dataset("json", data_files="dataset.jsonl")
|
|
|
12 |
|
13 |
# Tokenize the dataset
|
14 |
def tokenize_function(examples):
|
15 |
+
return tokenizer(
|
16 |
+
examples["input"],
|
17 |
+
text_target=examples["output"],
|
18 |
+
truncation=True, # Truncate sequences longer than max_length
|
19 |
+
max_length=512, # Adjust this based on your use case
|
20 |
+
padding="max_length" # Pad shorter sequences to max_length
|
21 |
+
)
|
22 |
|
23 |
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
24 |
|
25 |
+
for i, example in enumerate(tokenized_dataset["train"]):
|
26 |
+
input_len = len(example["input_ids"])
|
27 |
+
output_len = len(example["labels"])
|
28 |
+
print(f"Example {i}: Input length = {input_len}, Output length = {output_len}")
|
29 |
+
|
30 |
# Define training arguments
|
31 |
training_args = TrainingArguments(
|
32 |
output_dir="./results",
|
33 |
+
per_device_train_batch_size=1, # Smaller batch size
|
34 |
+
gradient_accumulation_steps=8, # Accumulate gradients to simulate larger batch size
|
|
|
|
|
35 |
num_train_epochs=3,
|
|
|
36 |
logging_dir="./logs",
|
37 |
+
logging_strategy="steps",
|
38 |
+
save_strategy="epoch",
|
39 |
+
eval_strategy="epoch",
|
40 |
+
learning_rate=5e-5,
|
41 |
+
overwrite_output_dir=True,
|
42 |
+
)
|
43 |
+
|
44 |
+
data_collator = DataCollatorForSeq2Seq(
|
45 |
+
tokenizer,
|
46 |
+
model=model,
|
47 |
+
padding=True, # Enable dynamic padding
|
48 |
+
return_tensors="pt"
|
49 |
)
|
50 |
|
|
|
51 |
trainer = Trainer(
|
52 |
model=model,
|
53 |
args=training_args,
|
54 |
train_dataset=tokenized_dataset["train"],
|
55 |
eval_dataset=tokenized_dataset["train"],
|
56 |
+
data_collator=data_collator, # Use dynamic padding
|
57 |
)
|
58 |
|
59 |
# Train the model
|