Spaces:
Running
Running
Update newsletter_api.py
Browse files- newsletter_api.py +90 -90
newsletter_api.py
CHANGED
@@ -1,91 +1,91 @@
|
|
1 |
-
import feedparser
|
2 |
-
import datetime
|
3 |
-
from fastapi import FastAPI
|
4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
5 |
-
import os
|
6 |
-
|
7 |
-
from sentence_transformers import SentenceTransformer, util
|
8 |
-
|
9 |
-
model = SentenceTransformer("all-MiniLM-L6-v2") # lightweight and fast
|
10 |
-
|
11 |
-
app = FastAPI()
|
12 |
-
|
13 |
-
# CORS
|
14 |
-
app.add_middleware(
|
15 |
-
CORSMiddleware,
|
16 |
-
allow_origins=["*"],
|
17 |
-
allow_credentials=True,
|
18 |
-
allow_methods=["*"],
|
19 |
-
allow_headers=["*"],
|
20 |
-
)
|
21 |
-
|
22 |
-
@app.get("/")
|
23 |
-
async def root():
|
24 |
-
return {"message": "Welcome to Newsletter API!"}
|
25 |
-
|
26 |
-
@app.post("/extract_titles")
|
27 |
-
async def extract_titles_from_rss(feed_urls: list[str]) -> list[str]:
|
28 |
-
"""Extracts titles from RSS feeds."""
|
29 |
-
try:
|
30 |
-
titles = []
|
31 |
-
for url in
|
32 |
-
feed = feedparser.parse(url)
|
33 |
-
for entry in feed.entries:
|
34 |
-
if 'title' in entry:
|
35 |
-
titles.append(entry.title)
|
36 |
-
return titles
|
37 |
-
except Exception as e:
|
38 |
-
return {"Error": str(e)}
|
39 |
-
|
40 |
-
@app.post("/extract_news")
|
41 |
-
def extract_news_from_rss(feed_urls: list[str], topic: str, threshold: float = 0.5):
|
42 |
-
"""Extracts news articles from RSS feeds relevant to a single topic using embeddings."""
|
43 |
-
try:
|
44 |
-
topic_articles = []
|
45 |
-
|
46 |
-
topic_embedding = model.encode(topic, convert_to_tensor=True)
|
47 |
-
|
48 |
-
for url in feed_urls:
|
49 |
-
feed = feedparser.parse(url)
|
50 |
-
for entry in feed.entries:
|
51 |
-
title = entry.get('title', '')
|
52 |
-
link = entry.get('link', '')
|
53 |
-
summary = entry.get('summary', '') or entry.get('description', '')
|
54 |
-
|
55 |
-
raw_content = entry.get('content')
|
56 |
-
if isinstance(raw_content, list) and raw_content:
|
57 |
-
content = raw_content[0].get('value', '')
|
58 |
-
elif isinstance(raw_content, str):
|
59 |
-
content = raw_content
|
60 |
-
else:
|
61 |
-
content = ''
|
62 |
-
|
63 |
-
article_text = title + " " + summary + " " + content
|
64 |
-
article_embedding = model.encode(article_text, convert_to_tensor=True)
|
65 |
-
|
66 |
-
score = util.cos_sim(article_embedding, topic_embedding).item()
|
67 |
-
|
68 |
-
# Replace double quotes inside title, summary, and content with single quotes
|
69 |
-
title = title.replace('"', "'")
|
70 |
-
summary = summary.replace('"', "'")
|
71 |
-
content = content.replace('"', "'")
|
72 |
-
|
73 |
-
if score >= threshold:
|
74 |
-
topic_articles.append({
|
75 |
-
"title": title,
|
76 |
-
"link": link,
|
77 |
-
"summary": summary,
|
78 |
-
"content": content,
|
79 |
-
"similarity": score
|
80 |
-
})
|
81 |
-
|
82 |
-
# Sort articles by similarity score
|
83 |
-
topic_articles.sort(key=lambda x: x["similarity"], reverse=True)
|
84 |
-
|
85 |
-
# Select top 1 article based on similarity score - due to LLM rate limits
|
86 |
-
if len(topic_articles) > 1:
|
87 |
-
topic_articles = topic_articles[:1]
|
88 |
-
|
89 |
-
return topic_articles
|
90 |
-
except Exception as e:
|
91 |
return {"Error": str(e)}
|
|
|
1 |
+
import feedparser
|
2 |
+
import datetime
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
import os
|
6 |
+
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
|
9 |
+
model = SentenceTransformer("all-MiniLM-L6-v2") # lightweight and fast
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# CORS
|
14 |
+
app.add_middleware(
|
15 |
+
CORSMiddleware,
|
16 |
+
allow_origins=["*"],
|
17 |
+
allow_credentials=True,
|
18 |
+
allow_methods=["*"],
|
19 |
+
allow_headers=["*"],
|
20 |
+
)
|
21 |
+
|
22 |
+
@app.get("/")
|
23 |
+
async def root():
|
24 |
+
return {"message": "Welcome to Newsletter API!"}
|
25 |
+
|
26 |
+
@app.post("/extract_titles")
|
27 |
+
async def extract_titles_from_rss(feed_urls: list[str]) -> list[str]:
|
28 |
+
"""Extracts titles from RSS feeds."""
|
29 |
+
try:
|
30 |
+
titles = []
|
31 |
+
for url in feed_urls:
|
32 |
+
feed = feedparser.parse(url)
|
33 |
+
for entry in feed.entries:
|
34 |
+
if 'title' in entry:
|
35 |
+
titles.append(entry.title)
|
36 |
+
return titles
|
37 |
+
except Exception as e:
|
38 |
+
return {"Error": str(e)}
|
39 |
+
|
40 |
+
@app.post("/extract_news")
|
41 |
+
def extract_news_from_rss(feed_urls: list[str], topic: str, threshold: float = 0.5):
|
42 |
+
"""Extracts news articles from RSS feeds relevant to a single topic using embeddings."""
|
43 |
+
try:
|
44 |
+
topic_articles = []
|
45 |
+
|
46 |
+
topic_embedding = model.encode(topic, convert_to_tensor=True)
|
47 |
+
|
48 |
+
for url in feed_urls:
|
49 |
+
feed = feedparser.parse(url)
|
50 |
+
for entry in feed.entries:
|
51 |
+
title = entry.get('title', '')
|
52 |
+
link = entry.get('link', '')
|
53 |
+
summary = entry.get('summary', '') or entry.get('description', '')
|
54 |
+
|
55 |
+
raw_content = entry.get('content')
|
56 |
+
if isinstance(raw_content, list) and raw_content:
|
57 |
+
content = raw_content[0].get('value', '')
|
58 |
+
elif isinstance(raw_content, str):
|
59 |
+
content = raw_content
|
60 |
+
else:
|
61 |
+
content = ''
|
62 |
+
|
63 |
+
article_text = title + " " + summary + " " + content
|
64 |
+
article_embedding = model.encode(article_text, convert_to_tensor=True)
|
65 |
+
|
66 |
+
score = util.cos_sim(article_embedding, topic_embedding).item()
|
67 |
+
|
68 |
+
# Replace double quotes inside title, summary, and content with single quotes
|
69 |
+
title = title.replace('"', "'")
|
70 |
+
summary = summary.replace('"', "'")
|
71 |
+
content = content.replace('"', "'")
|
72 |
+
|
73 |
+
if score >= threshold:
|
74 |
+
topic_articles.append({
|
75 |
+
"title": title,
|
76 |
+
"link": link,
|
77 |
+
"summary": summary,
|
78 |
+
"content": content,
|
79 |
+
"similarity": score
|
80 |
+
})
|
81 |
+
|
82 |
+
# Sort articles by similarity score
|
83 |
+
topic_articles.sort(key=lambda x: x["similarity"], reverse=True)
|
84 |
+
|
85 |
+
# Select top 1 article based on similarity score - due to LLM rate limits
|
86 |
+
if len(topic_articles) > 1:
|
87 |
+
topic_articles = topic_articles[:1]
|
88 |
+
|
89 |
+
return topic_articles
|
90 |
+
except Exception as e:
|
91 |
return {"Error": str(e)}
|