amine-01's picture
Update app.py
067fc57 verified
raw
history blame
5 kB
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
from dotenv import load_dotenv
import PyPDF2
import os
import io
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
# Define SPEAKER_TYPES to distinguish between user and bot roles
SPEAKER_TYPES = {
"USER": "user",
"BOT": "bot"
}
# Define the initial prompt to show when the app starts
initial_prompt = {
'role': SPEAKER_TYPES["BOT"],
'content': "Hello! I am your Gemini Pro RAG chatbot. You can ask me questions after uploading a PDF."
}
# --- Your RAG chatbot logic ---
source_data_folder = "MyData"
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", ". ", " ", ""],
chunk_size=2000,
chunk_overlap=200
)
embeddings_model = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
path_db = "/content/VectorDB"
llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro", google_api_key="AIzaSyAnsIVS4x_7lJLe9AYXGLV8FRwUTQkB-1w")
# --- Streamlit app starts here ---
# Set up the Streamlit app configuration
st.set_page_config(
page_title="Gemini Pro RAG App",
page_icon="πŸ”",
layout="wide",
initial_sidebar_state="expanded",
)
# Initialize session state for chat history and vectorstore (PDF context)
if 'chat_history' not in st.session_state:
st.session_state.chat_history = [initial_prompt]
if 'vectorstore' not in st.session_state:
st.session_state.vectorstore = None
# Function to clear chat history
def clear_chat_history():
st.session_state.chat_history = [initial_prompt]
# Extract text from PDF
def extract_text_from_pdf(pdf_bytes):
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Initialize vectorstore
def initialize_vector_index(text):
docs = [{'page_content': text}]
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings_model, persist_directory=path_db)
return vectorstore
# Sidebar configuration
with st.sidebar:
st.title('πŸ” Gemini RAG Chatbot')
st.write('This chatbot uses the Gemini Pro API with RAG capabilities.')
st.button('Clear Chat History', on_click=clear_chat_history, type='primary')
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"], help="Upload your PDF file here to start the analysis.")
if uploaded_file is not None:
st.success("PDF File Uploaded Successfully!")
text = extract_text_from_pdf(uploaded_file.read())
vectorstore = initialize_vector_index(text)
st.session_state.vectorstore = vectorstore
# Main interface
st.header('Gemini Pro RAG Chatbot')
st.subheader('Upload a PDF and ask questions about its content!')
# Display the welcome prompt if chat history is only the initial prompt
if len(st.session_state.chat_history) == 1:
with st.chat_message(SPEAKER_TYPES.BOT, avatar="πŸ”"):
st.write(initial_prompt['content'])
# Get user input
prompt = st.chat_input("Ask a question about the PDF content:", key="user_input")
# Function to get a response from RAG chain
def get_rag_response(prompt):
retriever = st.session_state.vectorstore.as_retriever() # Use the stored vectorstore retriever
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
response = rag_chain.invoke(prompt)
return response
# Handle the user prompt and generate response
if prompt:
# Add user prompt to chat history
st.session_state.chat_history.append({'role': SPEAKER_TYPES.USER, 'content': prompt})
# Display chat messages from the chat history
for message in st.session_state.chat_history[1:]:
with st.chat_message(message["role"], avatar="πŸ‘€" if message['role'] == SPEAKER_TYPES.USER else "πŸ”"):
st.write(message["content"])
# Get the response using the RAG chain
with st.spinner(text='Generating response...'):
response_text = get_rag_response(prompt)
st.session_state.chat_history.append({'role': SPEAKER_TYPES.BOT, 'content': response_text})
# Display the bot response
with st.chat_message(SPEAKER_TYPES.BOT, avatar="πŸ”"):
st.write(response_text)
# Add footer for additional information or credits
st.markdown("""
<hr>
<div style="text-align: center;">
<small>Powered by Gemini Pro API | Developed by Christian Thomas BADOLO</small>
</div>
""", unsafe_allow_html=True)