amir22010's picture
Update app.py
9d0cab3 verified
# -*- coding: utf-8 -*-
# file: app.py
# time: 18:37 23/09/2023
# author: Amir Khan
# github: https://github.com/Amir22010
import os
import numpy as np
import ast
import gradio as gr
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
try:
tokenizer_english = AutoTokenizer.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model",cache_dir=os.getcwd())
double_english_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model",cache_dir=os.getcwd())
except Exception as e:
print(e)
print("english model load error")
try:
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model",cache_dir=os.getcwd())
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model",cache_dir=os.getcwd())
except Exception as e:
print(e)
print("multilingual model load error")
try:
tokenizer_keybert = AutoTokenizer.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
except Exception as e:
print(e)
print("keybert model load error")
def perform_asde_inference(text, dataset, model_id):
if not text:
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
df = pd.read_csv('pyabsa_english.csv')#validation dataset
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
df = pd.read_csv('keybert_valid.csv')#validation dataset
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
selected_df = df.iloc[random_i]
text = selected_df['clean_text']
true_aspect = selected_df['actual_aspects']
true_sentiment = selected_df['actual_sentiments']
true_doubles = pd.DataFrame(list(map(list, zip(ast.literal_eval(true_aspect), ast.literal_eval(true_sentiment)))),columns=['Aspect','Sentiment'])
else:
true_doubles = pd.DataFrame([["NA","NA"]],columns=['Aspect','Sentiment'])
bos_instruction = """Definition: The output will be the aspects (both implicit and explicit) and the aspects sentiment polarity. In cases where there are no aspects the output should be noaspectterm:none.
Positive example 1-
input: this hospital has a good team of doctors who will take care of all your needs brilliantly.
output: doctors:positive
Positive example 2-
input: Arthur as Irv at ham hospital ran an Nagar , Madurai has a doctor who engages you in a conversation and tries to take your mind off the pain and he has trained the staff to do so as well.
output: doctor:positive, staff:positive
Now complete the following example-
input: """
delim_instruct = ''
eos_instruct = ' \noutput:'
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
tokenized_text = tokenizer_english(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
model_generated = tokenizer_multilingual.decode(output[0], skip_special_tokens=True)
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
pred_doubles = pd.DataFrame(list(map(list, zip(pred_asp, pred_sent))),columns=['Aspect','Sentiment'])
return pred_doubles, true_doubles, text, model_generated
def run_demo(text, dataset, model_id):
try:
return inference(text, dataset, model_id)
except Exception as e:
print(e)
def inference(text, dataset, model_id):
return perform_asde_inference(text, dataset, model_id)
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"# <p align='center'>Hospital Review Aspect Sentiment Generation</p>"
)
with gr.Row():
with gr.Column():
asde_input_sentence = gr.Textbox(
placeholder="Leave this box blank and choose a dataset will give you a random example...",
label="Example:",
)
gr.Markdown(
"You can find code and dataset at [MTech Thesis Project 2023](https://github.com/Amir22010/MTP_Thesis_Project_2023/tree/main)"
)
asde_dataset_ids = gr.Radio(
choices=[
"HospitalReviews"
],
value="HospitalReviews",
label="Datasets",
)
asde_model_ids = gr.Radio(
choices=[
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
"PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
"KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
],
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
label="Fine-tuned Models on Hospital Review custom data",
)
asde_inference_button = gr.Button("Let's go!")
asde_output_text = gr.TextArea(label="Example:")
asde_model_output_generated_sentence = gr.Textbox(
placeholder="Text Generated...",
label="Model Prediction Text Generated:",
)
asde_output_pred_df = gr.DataFrame(
label="Predicted Aspect & Sentiment:"
)
asde_output_true_df = gr.DataFrame(
label="Original Aspect & Sentiment:"
)
asde_inference_button.click(
fn=run_demo,
inputs=[
asde_input_sentence,
asde_dataset_ids,
asde_model_ids
],
outputs=[
asde_output_pred_df,
asde_output_true_df,
asde_output_text,
asde_model_output_generated_sentence
],
)
gr.Markdown(
"""### Author: [Amir Khan](https://github.com/Amir22010)
"""
)
demo.launch()