Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -15,24 +15,32 @@ try:
|
|
15 |
double_english_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
16 |
except:
|
17 |
print("english model load error")
|
18 |
-
|
19 |
try:
|
20 |
-
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/
|
21 |
-
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/
|
22 |
except:
|
23 |
print("multilingual model load error")
|
24 |
|
|
|
25 |
try:
|
26 |
-
tokenizer_keybert = AutoTokenizer.from_pretrained("amir22010/
|
27 |
-
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/
|
28 |
except:
|
29 |
print("keybert model load error")
|
30 |
-
|
31 |
'''
|
|
|
|
|
32 |
def perform_asde_inference(text, dataset, model_id):
|
33 |
if not text:
|
34 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
35 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
37 |
selected_df = df.iloc[random_i]
|
38 |
text = selected_df['clean_text']
|
@@ -59,16 +67,17 @@ def perform_asde_inference(text, dataset, model_id):
|
|
59 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
60 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
61 |
|
62 |
-
'''
|
63 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
64 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
65 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
66 |
-
|
67 |
-
|
|
|
68 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
69 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
70 |
-
|
71 |
'''
|
|
|
72 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
73 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
74 |
|
@@ -114,8 +123,8 @@ if __name__ == "__main__":
|
|
114 |
asde_model_ids = gr.Radio(
|
115 |
choices=[
|
116 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
117 |
-
|
118 |
-
#
|
119 |
],
|
120 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
121 |
label="Fine-tuned Models on Hospital Review custom data",
|
|
|
15 |
double_english_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
16 |
except:
|
17 |
print("english model load error")
|
18 |
+
|
19 |
try:
|
20 |
+
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
21 |
+
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
22 |
except:
|
23 |
print("multilingual model load error")
|
24 |
|
25 |
+
'''
|
26 |
try:
|
27 |
+
tokenizer_keybert = AutoTokenizer.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
28 |
+
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
29 |
except:
|
30 |
print("keybert model load error")
|
|
|
31 |
'''
|
32 |
+
|
33 |
+
|
34 |
def perform_asde_inference(text, dataset, model_id):
|
35 |
if not text:
|
36 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
37 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
38 |
+
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
39 |
+
df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
|
40 |
+
'''
|
41 |
+
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
42 |
+
df = pd.read_csv('keybert_valid.csv')#validation dataset
|
43 |
+
'''
|
44 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
45 |
selected_df = df.iloc[random_i]
|
46 |
text = selected_df['clean_text']
|
|
|
67 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
68 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
69 |
|
|
|
70 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
71 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
72 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
73 |
+
model_generated = tokenizer_multilingual.decode(output[0], skip_special_tokens=True)
|
74 |
+
'''
|
75 |
+
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
76 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
77 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
78 |
+
model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
79 |
'''
|
80 |
+
|
81 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
82 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
83 |
|
|
|
123 |
asde_model_ids = gr.Radio(
|
124 |
choices=[
|
125 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
126 |
+
"PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
127 |
+
#"KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
|
128 |
],
|
129 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
130 |
label="Fine-tuned Models on Hospital Review custom data",
|