Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -15,24 +15,32 @@ try:
|
|
| 15 |
double_english_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 16 |
except:
|
| 17 |
print("english model load error")
|
| 18 |
-
|
| 19 |
try:
|
| 20 |
-
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/
|
| 21 |
-
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/
|
| 22 |
except:
|
| 23 |
print("multilingual model load error")
|
| 24 |
|
|
|
|
| 25 |
try:
|
| 26 |
-
tokenizer_keybert = AutoTokenizer.from_pretrained("amir22010/
|
| 27 |
-
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/
|
| 28 |
except:
|
| 29 |
print("keybert model load error")
|
| 30 |
-
|
| 31 |
'''
|
|
|
|
|
|
|
| 32 |
def perform_asde_inference(text, dataset, model_id):
|
| 33 |
if not text:
|
| 34 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 35 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
| 37 |
selected_df = df.iloc[random_i]
|
| 38 |
text = selected_df['clean_text']
|
|
@@ -59,16 +67,17 @@ def perform_asde_inference(text, dataset, model_id):
|
|
| 59 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 60 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
| 61 |
|
| 62 |
-
'''
|
| 63 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 64 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 65 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 69 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 70 |
-
|
| 71 |
'''
|
|
|
|
| 72 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
| 73 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
| 74 |
|
|
@@ -114,8 +123,8 @@ if __name__ == "__main__":
|
|
| 114 |
asde_model_ids = gr.Radio(
|
| 115 |
choices=[
|
| 116 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 117 |
-
|
| 118 |
-
#
|
| 119 |
],
|
| 120 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 121 |
label="Fine-tuned Models on Hospital Review custom data",
|
|
|
|
| 15 |
double_english_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 16 |
except:
|
| 17 |
print("english model load error")
|
| 18 |
+
|
| 19 |
try:
|
| 20 |
+
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 21 |
+
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 22 |
except:
|
| 23 |
print("multilingual model load error")
|
| 24 |
|
| 25 |
+
'''
|
| 26 |
try:
|
| 27 |
+
tokenizer_keybert = AutoTokenizer.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 28 |
+
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 29 |
except:
|
| 30 |
print("keybert model load error")
|
|
|
|
| 31 |
'''
|
| 32 |
+
|
| 33 |
+
|
| 34 |
def perform_asde_inference(text, dataset, model_id):
|
| 35 |
if not text:
|
| 36 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 37 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
| 38 |
+
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 39 |
+
df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
|
| 40 |
+
'''
|
| 41 |
+
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 42 |
+
df = pd.read_csv('keybert_valid.csv')#validation dataset
|
| 43 |
+
'''
|
| 44 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
| 45 |
selected_df = df.iloc[random_i]
|
| 46 |
text = selected_df['clean_text']
|
|
|
|
| 67 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 68 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
| 69 |
|
|
|
|
| 70 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 71 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 72 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 73 |
+
model_generated = tokenizer_multilingual.decode(output[0], skip_special_tokens=True)
|
| 74 |
+
'''
|
| 75 |
+
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 76 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 77 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 78 |
+
model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
| 79 |
'''
|
| 80 |
+
|
| 81 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
| 82 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
| 83 |
|
|
|
|
| 123 |
asde_model_ids = gr.Radio(
|
| 124 |
choices=[
|
| 125 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 126 |
+
"PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 127 |
+
#"KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
|
| 128 |
],
|
| 129 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 130 |
label="Fine-tuned Models on Hospital Review custom data",
|