amir22010 commited on
Commit
3f46e22
·
1 Parent(s): 558e576

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -12
app.py CHANGED
@@ -15,24 +15,32 @@ try:
15
  double_english_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
16
  except:
17
  print("english model load error")
18
- '''
19
  try:
20
- tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/layoutxlm-xfund-ja")
21
- double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/layoutxlm-xfund-ja")
22
  except:
23
  print("multilingual model load error")
24
 
 
25
  try:
26
- tokenizer_keybert = AutoTokenizer.from_pretrained("amir22010/layoutxlm-xfund-ja")
27
- double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/layoutxlm-xfund-ja")
28
  except:
29
  print("keybert model load error")
30
-
31
  '''
 
 
32
  def perform_asde_inference(text, dataset, model_id):
33
  if not text:
34
  if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
35
  df = pd.read_csv('pyabsa_english.csv')#validation dataset
 
 
 
 
 
 
36
  random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
37
  selected_df = df.iloc[random_i]
38
  text = selected_df['clean_text']
@@ -59,16 +67,17 @@ def perform_asde_inference(text, dataset, model_id):
59
  output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
60
  model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
61
 
62
- '''
63
  elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
64
  tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
65
  output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
66
- result = tokenizer_multilingual.decode(output[0], skip_special_tokens=True)
67
- elif model_id == "PyABSA_Hospital_KeyBert_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
 
68
  tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
69
  output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
70
- result = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
71
  '''
 
72
  pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
73
  pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
74
 
@@ -114,8 +123,8 @@ if __name__ == "__main__":
114
  asde_model_ids = gr.Radio(
115
  choices=[
116
  "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
117
- # "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
118
- # "PyABSA_Hospital_KeyBert_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
119
  ],
120
  value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
121
  label="Fine-tuned Models on Hospital Review custom data",
 
15
  double_english_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
16
  except:
17
  print("english model load error")
18
+
19
  try:
20
+ tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
21
+ double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
22
  except:
23
  print("multilingual model load error")
24
 
25
+ '''
26
  try:
27
+ tokenizer_keybert = AutoTokenizer.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
28
+ double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
29
  except:
30
  print("keybert model load error")
 
31
  '''
32
+
33
+
34
  def perform_asde_inference(text, dataset, model_id):
35
  if not text:
36
  if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
37
  df = pd.read_csv('pyabsa_english.csv')#validation dataset
38
+ elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
39
+ df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
40
+ '''
41
+ elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
42
+ df = pd.read_csv('keybert_valid.csv')#validation dataset
43
+ '''
44
  random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
45
  selected_df = df.iloc[random_i]
46
  text = selected_df['clean_text']
 
67
  output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
68
  model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
69
 
 
70
  elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
71
  tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
72
  output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
73
+ model_generated = tokenizer_multilingual.decode(output[0], skip_special_tokens=True)
74
+ '''
75
+ elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
76
  tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
77
  output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
78
+ model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
79
  '''
80
+
81
  pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
82
  pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
83
 
 
123
  asde_model_ids = gr.Radio(
124
  choices=[
125
  "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
126
+ "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
127
+ #"KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
128
  ],
129
  value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
130
  label="Fine-tuned Models on Hospital Review custom data",