amir22010 commited on
Commit
7938b36
·
1 Parent(s): b667066

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -8
app.py CHANGED
@@ -16,7 +16,6 @@ try:
16
  except:
17
  print("english model load error")
18
 
19
- '''
20
  try:
21
  tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
22
  double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
@@ -28,19 +27,17 @@ try:
28
  double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
29
  except:
30
  print("keybert model load error")
31
- '''
32
 
33
 
34
  def perform_asde_inference(text, dataset, model_id):
35
  if not text:
36
  if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
37
  df = pd.read_csv('pyabsa_english.csv')#validation dataset
38
- '''
39
  elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
40
  df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
41
  elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
42
  df = pd.read_csv('keybert_valid.csv')#validation dataset
43
- '''
44
  random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
45
  selected_df = df.iloc[random_i]
46
  text = selected_df['clean_text']
@@ -67,7 +64,6 @@ def perform_asde_inference(text, dataset, model_id):
67
  output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
68
  model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
69
 
70
- '''
71
  elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
72
  tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
73
  output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
@@ -77,7 +73,6 @@ def perform_asde_inference(text, dataset, model_id):
77
  tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
78
  output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
79
  model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
80
- '''
81
 
82
  pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
83
  pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
@@ -124,8 +119,8 @@ if __name__ == "__main__":
124
  asde_model_ids = gr.Radio(
125
  choices=[
126
  "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
127
- #"PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
128
- #"KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
129
  ],
130
  value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
131
  label="Fine-tuned Models on Hospital Review custom data",
 
16
  except:
17
  print("english model load error")
18
 
 
19
  try:
20
  tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
21
  double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
 
27
  double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
28
  except:
29
  print("keybert model load error")
 
30
 
31
 
32
  def perform_asde_inference(text, dataset, model_id):
33
  if not text:
34
  if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
35
  df = pd.read_csv('pyabsa_english.csv')#validation dataset
 
36
  elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
37
  df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
38
  elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
39
  df = pd.read_csv('keybert_valid.csv')#validation dataset
40
+
41
  random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
42
  selected_df = df.iloc[random_i]
43
  text = selected_df['clean_text']
 
64
  output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
65
  model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
66
 
 
67
  elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
68
  tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
69
  output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
 
73
  tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
74
  output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
75
  model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
 
76
 
77
  pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
78
  pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
 
119
  asde_model_ids = gr.Radio(
120
  choices=[
121
  "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
122
+ "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
123
+ "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
124
  ],
125
  value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
126
  label="Fine-tuned Models on Hospital Review custom data",