Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,6 @@ try:
|
|
16 |
except:
|
17 |
print("english model load error")
|
18 |
|
19 |
-
'''
|
20 |
try:
|
21 |
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
22 |
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
@@ -28,19 +27,17 @@ try:
|
|
28 |
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
29 |
except:
|
30 |
print("keybert model load error")
|
31 |
-
'''
|
32 |
|
33 |
|
34 |
def perform_asde_inference(text, dataset, model_id):
|
35 |
if not text:
|
36 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
37 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
38 |
-
'''
|
39 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
40 |
df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
|
41 |
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
42 |
df = pd.read_csv('keybert_valid.csv')#validation dataset
|
43 |
-
|
44 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
45 |
selected_df = df.iloc[random_i]
|
46 |
text = selected_df['clean_text']
|
@@ -67,7 +64,6 @@ def perform_asde_inference(text, dataset, model_id):
|
|
67 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
68 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
69 |
|
70 |
-
'''
|
71 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
72 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
73 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
@@ -77,7 +73,6 @@ def perform_asde_inference(text, dataset, model_id):
|
|
77 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
78 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
79 |
model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
80 |
-
'''
|
81 |
|
82 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
83 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
@@ -124,8 +119,8 @@ if __name__ == "__main__":
|
|
124 |
asde_model_ids = gr.Radio(
|
125 |
choices=[
|
126 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
127 |
-
|
128 |
-
|
129 |
],
|
130 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
131 |
label="Fine-tuned Models on Hospital Review custom data",
|
|
|
16 |
except:
|
17 |
print("english model load error")
|
18 |
|
|
|
19 |
try:
|
20 |
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
21 |
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
|
|
27 |
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
28 |
except:
|
29 |
print("keybert model load error")
|
|
|
30 |
|
31 |
|
32 |
def perform_asde_inference(text, dataset, model_id):
|
33 |
if not text:
|
34 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
35 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
|
|
36 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
37 |
df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
|
38 |
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
39 |
df = pd.read_csv('keybert_valid.csv')#validation dataset
|
40 |
+
|
41 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
42 |
selected_df = df.iloc[random_i]
|
43 |
text = selected_df['clean_text']
|
|
|
64 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
65 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
66 |
|
|
|
67 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
68 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
69 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
|
|
73 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
74 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
75 |
model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
|
|
76 |
|
77 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
78 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
|
|
119 |
asde_model_ids = gr.Radio(
|
120 |
choices=[
|
121 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
122 |
+
"PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
123 |
+
"KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
|
124 |
],
|
125 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
126 |
label="Fine-tuned Models on Hospital Review custom data",
|