Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -30,7 +30,6 @@ except:
|
|
30 |
|
31 |
'''
|
32 |
def perform_asde_inference(text, dataset, model_id):
|
33 |
-
print(text)
|
34 |
if not text:
|
35 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
36 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
@@ -39,7 +38,6 @@ def perform_asde_inference(text, dataset, model_id):
|
|
39 |
text = selected_df['clean_text']
|
40 |
true_aspect = selected_df['actual_aspects']
|
41 |
true_sentiment = selected_df['actual_sentiments']
|
42 |
-
|
43 |
|
44 |
bos_instruction = """Definition: The output will be the aspects (both implicit and explicit) and the aspects sentiment polarity. In cases where there are no aspects the output should be noaspectterm:none.
|
45 |
Positive example 1-
|
@@ -67,11 +65,15 @@ def perform_asde_inference(text, dataset, model_id):
|
|
67 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
68 |
result = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
69 |
'''
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
return pred_doubles, true_doubles, text, model_generated
|
77 |
|
|
|
30 |
|
31 |
'''
|
32 |
def perform_asde_inference(text, dataset, model_id):
|
|
|
33 |
if not text:
|
34 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
35 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
|
|
38 |
text = selected_df['clean_text']
|
39 |
true_aspect = selected_df['actual_aspects']
|
40 |
true_sentiment = selected_df['actual_sentiments']
|
|
|
41 |
|
42 |
bos_instruction = """Definition: The output will be the aspects (both implicit and explicit) and the aspects sentiment polarity. In cases where there are no aspects the output should be noaspectterm:none.
|
43 |
Positive example 1-
|
|
|
65 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
66 |
result = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
67 |
'''
|
68 |
+
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
69 |
+
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
70 |
|
71 |
+
pred_doubles = pd.DataFrame(list(map(list, zip(pred_asp, pred_sent))),columns=['Aspect','Sentiment'])
|
72 |
+
|
73 |
+
if not text:
|
74 |
+
true_doubles = pd.DataFrame(list(map(list, zip(ast.literal_eval(true_aspect), ast.literal_eval(true_sentiment)))),columns=['Aspect','Sentiment'])
|
75 |
+
else:
|
76 |
+
true_doubles = pd.DataFrame()
|
77 |
|
78 |
return pred_doubles, true_doubles, text, model_generated
|
79 |
|