File size: 5,616 Bytes
f9ce5cf 0079512 f9ce5cf 0079512 f9ce5cf 0079512 f9ce5cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import streamlit as st
import numpy as np
import pandas as pd
import json
import base64
import uuid
from pandas import DataFrame
import time
import re
def download_button(object_to_download, download_filename, button_text):
if isinstance(object_to_download, bytes):
pass
elif isinstance(object_to_download, pd.DataFrame):
object_to_download = object_to_download.to_csv(index=False)
# Try JSON encode for everything else
else:
object_to_download = json.dumps(object_to_download)
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError as e:
b64 = base64.b64encode(object_to_download).decode()
button_uuid = str(uuid.uuid4()).replace("-", "")
button_id = re.sub("\d+", "", button_uuid)
custom_css = f"""
<style>
#{button_id} {{
display: inline-flex;
align-items: center;
justify-content: center;
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: .25rem .75rem;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
dl_link = (
custom_css
+ f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br><br>'
)
# dl_link = f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}"><input type="button" kind="primary" value="{button_text}"></a><br></br>'
st.markdown(dl_link, unsafe_allow_html=True)
class c_model:
def __init__(self):
# st.write('my model')
pass
@st.cache
def load_model(self, name_or_path):
time.sleep(3)
return None
def predict(self, texts):
return np.random.randint(2), np.random.rand()
st.title('Sentiment Analysis')
# Load classification model
with st.spinner('Loading classification model...'):
from transformers import pipeline
checkpoint = "amir7d0/distilbert-base-uncased-finetuned-amazon-reviews"
checkpoint = "/home/v4vendetta/Documents/bert-fa-base-uncased-sentiment-digikala"
classifier = pipeline("text-classification", model=checkpoint)
tab1, tab2 = st.tabs(["Single Comment", "Multiple Comment"])
with tab1:
st.subheader('Single comment classification')
text_input = st.text_area(label='Paste your text below (max 256 words)',
value='Hiiiiiiiii')
MAX_WORDS = 256
res = len(re.findall(r"\w+", text_input))
if res > MAX_WORDS:
st.warning(
"β οΈ Your text contains "
+ str(res)
+ " words."
+ " Only the first 256 words will be reviewed! π"
)
text_input = text_input[:MAX_WORDS]
submit_button = st.button(label='Submit comment')
if submit_button:
with st.spinner('Predicting ...'):
start_time = time.time()
time.sleep(2)
preds = classifier([text_input])[0]
end_time = time.time()
p_time = round(end_time-start_time, 2)
st.success(f'Prediction finished in {p_time}s!')
st.write(f'Label: {preds["label"]}, with certainty: {preds["score"]}')
with tab2:
st.subheader('Multiple comment classification')
file_input = st.file_uploader(label='Choose a file:', type='csv')
if file_input:
try:
df = pd.read_csv(file_input)
texts = df['text'].to_list()
except:
st.write('Bad File Error...')
st.write(f"First 5 rows of {file_input.name} texts")
st.write(texts[:5])
submit_button = st.button(label='Submit file')
if submit_button:
with st.spinner('Predicting ...'):
start_time = time.time()
time.sleep(2)
preds = classifier(texts)
end_time = time.time()
p_time = round(end_time-start_time, 2)
st.success(f'Prediction finished in {p_time}s!')
for text, pred in zip(texts, preds):
pred['text'] = text
c1, c2 = st.columns([3, 1])
with c1:
st.subheader("π Check & download results")
with c2:
CSVButton2 = download_button(preds, "sentiment-analysis-preds.csv", "π₯ Download (.csv)")
st.header("")
df = pd.DataFrame(preds, columns=['text', 'label', 'score'])
import seaborn as sns
# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
cmap=cmGreen,
subset=["score"],
)
st.table(df) |