Spaces:
Running
Running
import json | |
import logging | |
import wave | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import Iterable, List, Optional, Union | |
import numpy as np | |
import onnxruntime | |
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run | |
from .config import PhonemeType, PiperConfig | |
from .const import BOS, EOS, PAD | |
from .util import audio_float_to_int16 | |
_LOGGER = logging.getLogger(__name__) | |
class PiperVoice: | |
session: onnxruntime.InferenceSession | |
config: PiperConfig | |
def load( | |
model_path: Union[str, Path], | |
config_path: Optional[Union[str, Path]] = None, | |
use_cuda: bool = False, | |
) -> "PiperVoice": | |
"""Load an ONNX model and config.""" | |
if config_path is None: | |
config_path = f"{model_path}.json" | |
with open(config_path, "r", encoding="utf-8") as config_file: | |
config_dict = json.load(config_file) | |
return PiperVoice( | |
config=PiperConfig.from_dict(config_dict), | |
session=onnxruntime.InferenceSession( | |
str(model_path), | |
sess_options=onnxruntime.SessionOptions(), | |
providers=["CPUExecutionProvider"] | |
if not use_cuda | |
else ["CUDAExecutionProvider"], | |
), | |
) | |
def phonemize(self, text: str) -> List[List[str]]: | |
"""Text to phonemes grouped by sentence.""" | |
if self.config.phoneme_type == PhonemeType.ESPEAK: | |
if self.config.espeak_voice == "ar": | |
# Arabic diacritization | |
# https://github.com/mush42/libtashkeel/ | |
text = tashkeel_run(text) | |
return phonemize_espeak(text, self.config.espeak_voice) | |
if self.config.phoneme_type == PhonemeType.TEXT: | |
return phonemize_codepoints(text) | |
raise ValueError(f"Unexpected phoneme type: {self.config.phoneme_type}") | |
def phonemes_to_ids(self, phonemes: List[str]) -> List[int]: | |
"""Phonemes to ids.""" | |
id_map = self.config.phoneme_id_map | |
ids: List[int] = list(id_map[BOS]) | |
for phoneme in phonemes: | |
if phoneme not in id_map: | |
_LOGGER.warning("Missing phoneme from id map: %s", phoneme) | |
continue | |
ids.extend(id_map[phoneme]) | |
ids.extend(id_map[PAD]) | |
ids.extend(id_map[EOS]) | |
return ids | |
def synthesize( | |
self, | |
text: str, | |
wav_file: wave.Wave_write, | |
speaker_id: Optional[int] = None, | |
length_scale: Optional[float] = None, | |
noise_scale: Optional[float] = None, | |
noise_w: Optional[float] = None, | |
sentence_silence: float = 0.0, | |
): | |
"""Synthesize WAV audio from text.""" | |
wav_file.setframerate(self.config.sample_rate) | |
wav_file.setsampwidth(2) # 16-bit | |
wav_file.setnchannels(1) # mono | |
for audio_bytes in self.synthesize_stream_raw( | |
text, | |
speaker_id=speaker_id, | |
length_scale=length_scale, | |
noise_scale=noise_scale, | |
noise_w=noise_w, | |
sentence_silence=sentence_silence, | |
): | |
wav_file.writeframes(audio_bytes) | |
def synthesize_stream_raw( | |
self, | |
text: str, | |
speaker_id: Optional[int] = None, | |
length_scale: Optional[float] = None, | |
noise_scale: Optional[float] = None, | |
noise_w: Optional[float] = None, | |
sentence_silence: float = 0.0, | |
) -> Iterable[bytes]: | |
"""Synthesize raw audio per sentence from text.""" | |
sentence_phonemes = self.phonemize(text) | |
# 16-bit mono | |
num_silence_samples = int(sentence_silence * self.config.sample_rate) | |
silence_bytes = bytes(num_silence_samples * 2) | |
for phonemes in sentence_phonemes: | |
phoneme_ids = self.phonemes_to_ids(phonemes) | |
yield self.synthesize_ids_to_raw( | |
phoneme_ids, | |
speaker_id=speaker_id, | |
length_scale=length_scale, | |
noise_scale=noise_scale, | |
noise_w=noise_w, | |
) + silence_bytes | |
def synthesize_ids_to_raw( | |
self, | |
phoneme_ids: List[int], | |
speaker_id: Optional[int] = None, | |
length_scale: Optional[float] = None, | |
noise_scale: Optional[float] = None, | |
noise_w: Optional[float] = None, | |
) -> bytes: | |
"""Synthesize raw audio from phoneme ids.""" | |
if length_scale is None: | |
length_scale = self.config.length_scale | |
if noise_scale is None: | |
noise_scale = self.config.noise_scale | |
if noise_w is None: | |
noise_w = self.config.noise_w | |
phoneme_ids_array = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0) | |
phoneme_ids_lengths = np.array([phoneme_ids_array.shape[1]], dtype=np.int64) | |
scales = np.array( | |
[noise_scale, length_scale, noise_w], | |
dtype=np.float32, | |
) | |
if (self.config.num_speakers > 1) and (speaker_id is None): | |
# Default speaker | |
speaker_id = 0 | |
sid = None | |
if speaker_id is not None: | |
sid = np.array([speaker_id], dtype=np.int64) | |
# Synthesize through Onnx | |
audio = self.session.run( | |
None, | |
{ | |
"input": phoneme_ids_array, | |
"input_lengths": phoneme_ids_lengths, | |
"scales": scales, | |
"sid": sid, | |
}, | |
)[0].squeeze((0, 1)) | |
audio = audio_float_to_int16(audio.squeeze()) | |
return audio.tobytes() | |