Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,083 Bytes
de2aa9b ba4d1a9 e6399c3 ba4d1a9 ce6434e ba4d1a9 6ef9294 ce6434e 6ef9294 ce6434e 6ef9294 ce6434e 6ef9294 ce6434e e6399c3 ce6434e e6399c3 ce6434e e6399c3 ce6434e e6399c3 ce6434e 6ef9294 ce6434e de2aa9b 6ef9294 ce6434e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import cv2
import numpy as np
from PIL import Image
from transparent_background import Remover
remover = Remover(mode='fast') # Custom setting
def doo(video):
cap = cv2.VideoCapture(video) # Video reader for input
fps = cap.get(cv2.CAP_PROP_FPS)
processed_frames = [] # List to store processed frames
while cap.isOpened():
ret, frame = cap.read() # Read video
if ret is False:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(frame).convert('RGB')
# Process the frame using the transparent-background model
out = remover.process(img, type='map') # Same as image, except for 'rgba'
# Convert the processed frame back to a NumPy array
processed_frame = np.array(out)
# Append the processed frame to the list
processed_frames.append(processed_frame)
cap.release()
# Return the list of processed frames
return processed_frames
iface = gr.Interface(fn=doo, inputs="video", outputs="video")
iface.launch()
|