File size: 1,083 Bytes
de2aa9b
ba4d1a9
 
e6399c3
ba4d1a9
 
ce6434e
ba4d1a9
6ef9294
ce6434e
6ef9294
ce6434e
 
 
6ef9294
ce6434e
 
6ef9294
 
ce6434e
e6399c3
 
ce6434e
e6399c3
 
ce6434e
e6399c3
 
ce6434e
e6399c3
 
ce6434e
6ef9294
ce6434e
 
 
de2aa9b
6ef9294
ce6434e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
import cv2
import numpy as np
from PIL import Image
from transparent_background import Remover

remover = Remover(mode='fast')  # Custom setting

def doo(video):
    cap = cv2.VideoCapture(video)  # Video reader for input
    fps = cap.get(cv2.CAP_PROP_FPS)

    processed_frames = []  # List to store processed frames

    while cap.isOpened():
        ret, frame = cap.read()  # Read video

        if ret is False:
            break

        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        img = Image.fromarray(frame).convert('RGB')

        # Process the frame using the transparent-background model
        out = remover.process(img, type='map')  # Same as image, except for 'rgba'

        # Convert the processed frame back to a NumPy array
        processed_frame = np.array(out)

        # Append the processed frame to the list
        processed_frames.append(processed_frame)

    cap.release()

    # Return the list of processed frames
    return processed_frames

iface = gr.Interface(fn=doo, inputs="video", outputs="video")
iface.launch()