import spaces import gradio as gr import cv2 import numpy as np import time from PIL import Image from transparent_background import Remover @spaces.GPU() def doo(video, mode): if(mode == 'Normal'): remover = Remover() else: remover = Remover(mode='fast') cap = cv2.VideoCapture(video) fps = cap.get(cv2.CAP_PROP_FPS) writer = None processed_frames = 0 start_time = time.time() while cap.isOpened(): ret, frame = cap.read() if ret is False: break if time.time() - start_time >= 55: print("GPU Timeout is coming") cap.release() writer.release() return 'output.mp4' frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img = Image.fromarray(frame).convert('RGB') if writer is None: writer = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, img.size) processed_frames += 1 print(f"Processing: {processed_frames}") out = remover.process(img, type='green') writer.write(cv2.cvtColor(np.array(out), cv2.COLOR_BGR2RGB)) cap.release() writer.release() return 'output.mp4' title = "🎞️Video Background Removal tool🎥" description = r"""Please note that if your video file is long (or having high amount of frames) the result may be shorter than input video because of the GPU timeout.
In this case consider trying Fast mode.""" examples = [['./input.mp4'],] iface = gr.Interface( fn=doo, inputs=["video", gr.components.Radio(['Normal', 'Fast'], label='Select mode', value='Normal', info= 'Normal is more accurate, but takes longer. | Fast has lower accuracy so the process will be faster.')], outputs="video", examples=examples, title=title, description=description ) iface.launch()