Spaces:
Running
Running
import gradio as gr | |
from nudenet import NudeDetector | |
import cv2 | |
import numpy as np | |
def circular_blur(image_path, detections, parts_to_blur): | |
image = cv2.imread(image_path) | |
for detection in detections: | |
label = detection['class'] | |
if label in parts_to_blur: | |
x, y, width, height = map(int, detection['box']) | |
center_x, center_y = x + width // 2, y + height // 2 | |
radius = int(min(width, height)) | |
mask = np.zeros_like(image) | |
cv2.circle(mask, (center_x, center_y), radius, (255, 255, 255), -1) | |
blurred_image = cv2.GaussianBlur(image, (75, 75), 50) | |
image = np.where(mask == 255, blurred_image, image) | |
blurred_image_path = 'blurred_' + image_path.split('/')[-1] | |
cv2.imwrite(blurred_image_path, image) | |
return blurred_image_path | |
def process(input_img): | |
detector = NudeDetector(model_path="640m.onnx", inference_resolution=640) | |
detections = detector.detect(input_img) | |
print(detections) | |
parts_to_blur = [ | |
'FEMALE_GENITALIA_EXPOSED', 'MALE_GENITALIA_EXPOSED', | |
'FEMALE_BREAST_EXPOSED', 'BUTTOCKS_EXPOSED', | |
'MALE_BREAST_EXPOSED', 'ANUS_EXPOSED' | |
] | |
blurred_image_path = circular_blur(input_img, detections, parts_to_blur) | |
return blurred_image_path | |
title = "SFW Converter" | |
description = 'Blurs NSFW images using "NudeNet" Package.' | |
iface = gr.Interface(process, gr.components.Image(type='filepath'), gr.components.Image(type="filepath"), title=title, description=description) | |
iface.launch() |