import gradio as gr from nudenet import NudeDetector import cv2 import numpy as np def circular_blur(image_path, detections, parts_to_blur): image = cv2.imread(image_path) for detection in detections: label = detection['class'] if label in parts_to_blur: x, y, width, height = map(int, detection['box']) center_x, center_y = x + width // 2, y + height // 2 radius = int(min(width, height)) mask = np.zeros_like(image) cv2.circle(mask, (center_x, center_y), radius, (255, 255, 255), -1) blurred_image = cv2.GaussianBlur(image, (75, 75), 50) image = np.where(mask == 255, blurred_image, image) blurred_image_path = 'blurred_' + image_path.split('/')[-1] cv2.imwrite(blurred_image_path, image) return blurred_image_path def process(input_img): detector = NudeDetector(model_path="640m.onnx", inference_resolution=640) detections = detector.detect(input_img) print(detections) parts_to_blur = [ 'FEMALE_GENITALIA_EXPOSED', 'MALE_GENITALIA_EXPOSED', 'FEMALE_BREAST_EXPOSED', 'BUTTOCKS_EXPOSED', 'MALE_BREAST_EXPOSED', 'ANUS_EXPOSED' ] blurred_image_path = circular_blur(input_img, detections, parts_to_blur) return blurred_image_path title = "SFW Converter" description = 'Blurs NSFW images using "NudeNet" Package.' iface = gr.Interface(process, gr.components.Image(type='filepath'), gr.components.Image(type="filepath"), title=title, description=description) iface.launch()