Spaces:
Sleeping
Sleeping
Commit
·
edc613f
1
Parent(s):
0c1b0dd
Updata app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,43 @@
|
|
1 |
import gradio
|
|
|
|
|
|
|
2 |
from App.tfidfrecommender import TfidfRecommender
|
3 |
|
4 |
import gradio as gr
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
demo.launch()
|
|
|
|
|
|
1 |
import gradio
|
2 |
+
import pandas as pd
|
3 |
+
import concurrent.futures
|
4 |
+
|
5 |
from App.tfidfrecommender import TfidfRecommender
|
6 |
|
7 |
import gradio as gr
|
8 |
|
9 |
+
desc = pd.read_csv('App/data/descriptions.csv')
|
10 |
+
|
11 |
+
rec = TfidfRecommender(desc, 'id', 'description' , "none")
|
12 |
+
def initialize_and_tokenize(tokenizer):
|
13 |
+
rec.tokenization_method = tokenizer
|
14 |
+
rec.tokenize_text()
|
15 |
+
|
16 |
+
names = []
|
17 |
+
def recommend (movies) :
|
18 |
+
pool = concurrent.futures.ThreadPoolExecutor(max_workers=10)
|
19 |
+
futures = [pool.submit(rec.recommend_k_items, movie, 5) for movie in movies]
|
20 |
+
idss = [f.result() for f in futures]
|
21 |
+
ids = [id for ids in idss for id in ids]
|
22 |
+
ids = list(set(ids))
|
23 |
+
names = desc[desc['id'].isin(ids)]['title'].to_list()
|
24 |
|
25 |
+
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
28 |
+
with gr.Row():
|
29 |
+
radio = gr.Radio(["bert", "scibert", "nltk" , "none"], value="none",
|
30 |
+
label="Tokenization and text preprocess")
|
31 |
+
btn = gr.Button("Tokenize and Preprocess")
|
32 |
+
btn.click(fn=initialize_and_tokenize, inputs=radio, outputs=[])
|
33 |
+
|
34 |
+
gr.Markdown("Choose 3 movies")
|
35 |
+
with gr.Row():
|
36 |
+
dropdown = gr.Dropdown(choices = list(desc['title']), multiselect=True, max_choices=3,
|
37 |
+
label="Movies")
|
38 |
+
btn2 = gr.Button("Recommend")
|
39 |
+
btn2.click(fn=recommend, inputs=dropdown,outputs=[])
|
40 |
+
gr.Markdown("rec{}".format(len(names)))
|
41 |
demo.launch()
|
42 |
+
|
43 |
+
# demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
|