Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,50 +3,57 @@ import spaces
|
|
3 |
import numpy as np
|
4 |
import random
|
5 |
import torch
|
6 |
-
from diffusers import StableDiffusion3Pipeline
|
7 |
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
dtype = torch.float16
|
10 |
|
|
|
11 |
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
12 |
-
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=
|
13 |
|
|
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 1344
|
16 |
|
17 |
@spaces.GPU
|
18 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
19 |
-
|
20 |
if randomize_seed:
|
21 |
seed = random.randint(0, MAX_SEED)
|
22 |
|
23 |
generator = torch.Generator().manual_seed(seed)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
|
|
|
37 |
examples = [
|
38 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
39 |
"An astronaut riding a green horse",
|
40 |
"A delicious ceviche cheesecake slice",
|
41 |
]
|
42 |
|
43 |
-
css="""
|
44 |
#col-container {
|
45 |
margin: 0 auto;
|
46 |
max-width: 580px;
|
47 |
}
|
48 |
"""
|
49 |
|
|
|
50 |
with gr.Blocks(css=css) as demo:
|
51 |
|
52 |
with gr.Column(elem_id="col-container"):
|
@@ -56,7 +63,6 @@ with gr.Blocks(css=css) as demo:
|
|
56 |
""")
|
57 |
|
58 |
with gr.Row():
|
59 |
-
|
60 |
prompt = gr.Text(
|
61 |
label="Prompt",
|
62 |
show_label=False,
|
@@ -70,7 +76,6 @@ with gr.Blocks(css=css) as demo:
|
|
70 |
result = gr.Image(label="Result", show_label=False)
|
71 |
|
72 |
with gr.Accordion("Advanced Settings", open=False):
|
73 |
-
|
74 |
negative_prompt = gr.Text(
|
75 |
label="Negative prompt",
|
76 |
max_lines=1,
|
@@ -88,7 +93,6 @@ with gr.Blocks(css=css) as demo:
|
|
88 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
89 |
|
90 |
with gr.Row():
|
91 |
-
|
92 |
width = gr.Slider(
|
93 |
label="Width",
|
94 |
minimum=256,
|
@@ -106,7 +110,6 @@ with gr.Blocks(css=css) as demo:
|
|
106 |
)
|
107 |
|
108 |
with gr.Row():
|
109 |
-
|
110 |
guidance_scale = gr.Slider(
|
111 |
label="Guidance scale",
|
112 |
minimum=0.0,
|
@@ -124,14 +127,16 @@ with gr.Blocks(css=css) as demo:
|
|
124 |
)
|
125 |
|
126 |
gr.Examples(
|
127 |
-
examples
|
128 |
-
inputs
|
129 |
)
|
|
|
130 |
gr.on(
|
131 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
132 |
-
fn
|
133 |
-
inputs
|
134 |
-
outputs
|
135 |
)
|
136 |
|
137 |
-
|
|
|
|
3 |
import numpy as np
|
4 |
import random
|
5 |
import torch
|
6 |
+
from diffusers import StableDiffusion3Pipeline
|
7 |
|
8 |
+
# Set device and data type
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
dtype = torch.float16
|
11 |
|
12 |
+
# Load the Stable Diffusion model
|
13 |
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
14 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=dtype).to(device)
|
15 |
|
16 |
+
# Constants
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 1344
|
19 |
|
20 |
@spaces.GPU
|
21 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
|
|
22 |
if randomize_seed:
|
23 |
seed = random.randint(0, MAX_SEED)
|
24 |
|
25 |
generator = torch.Generator().manual_seed(seed)
|
26 |
|
27 |
+
try:
|
28 |
+
image = pipe(
|
29 |
+
prompt=prompt,
|
30 |
+
negative_prompt=negative_prompt,
|
31 |
+
guidance_scale=guidance_scale,
|
32 |
+
num_inference_steps=num_inference_steps,
|
33 |
+
width=width,
|
34 |
+
height=height,
|
35 |
+
generator=generator
|
36 |
+
).images[0]
|
37 |
+
|
38 |
+
return image, seed
|
39 |
+
except Exception as e:
|
40 |
+
return str(e), seed # Return error message if any
|
41 |
|
42 |
+
# Example prompts
|
43 |
examples = [
|
44 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
45 |
"An astronaut riding a green horse",
|
46 |
"A delicious ceviche cheesecake slice",
|
47 |
]
|
48 |
|
49 |
+
css = """
|
50 |
#col-container {
|
51 |
margin: 0 auto;
|
52 |
max-width: 580px;
|
53 |
}
|
54 |
"""
|
55 |
|
56 |
+
# Create Gradio interface
|
57 |
with gr.Blocks(css=css) as demo:
|
58 |
|
59 |
with gr.Column(elem_id="col-container"):
|
|
|
63 |
""")
|
64 |
|
65 |
with gr.Row():
|
|
|
66 |
prompt = gr.Text(
|
67 |
label="Prompt",
|
68 |
show_label=False,
|
|
|
76 |
result = gr.Image(label="Result", show_label=False)
|
77 |
|
78 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
79 |
negative_prompt = gr.Text(
|
80 |
label="Negative prompt",
|
81 |
max_lines=1,
|
|
|
93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
|
95 |
with gr.Row():
|
|
|
96 |
width = gr.Slider(
|
97 |
label="Width",
|
98 |
minimum=256,
|
|
|
110 |
)
|
111 |
|
112 |
with gr.Row():
|
|
|
113 |
guidance_scale = gr.Slider(
|
114 |
label="Guidance scale",
|
115 |
minimum=0.0,
|
|
|
127 |
)
|
128 |
|
129 |
gr.Examples(
|
130 |
+
examples=examples,
|
131 |
+
inputs=[prompt]
|
132 |
)
|
133 |
+
|
134 |
gr.on(
|
135 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
136 |
+
fn=infer,
|
137 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
138 |
+
outputs=[result, seed]
|
139 |
)
|
140 |
|
141 |
+
# Launch the app
|
142 |
+
demo.launch(timeout=10) # Increase timeout if needed
|