/*! | |
* decimal.js v10.4.3 | |
* An arbitrary-precision Decimal type for JavaScript. | |
* https://github.com/MikeMcl/decimal.js | |
* Copyright (c) 2022 Michael Mclaughlin <[email protected]> | |
* MIT Licence | |
*/ | |
// ----------------------------------- EDITABLE DEFAULTS ------------------------------------ // | |
// The maximum exponent magnitude. | |
// The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`. | |
var EXP_LIMIT = 9e15, // 0 to 9e15 | |
// The limit on the value of `precision`, and on the value of the first argument to | |
// `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`. | |
MAX_DIGITS = 1e9, // 0 to 1e9 | |
// Base conversion alphabet. | |
NUMERALS = '0123456789abcdef', | |
// The natural logarithm of 10 (1025 digits). | |
LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058', | |
// Pi (1025 digits). | |
PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789', | |
// The initial configuration properties of the Decimal constructor. | |
DEFAULTS = { | |
// These values must be integers within the stated ranges (inclusive). | |
// Most of these values can be changed at run-time using the `Decimal.config` method. | |
// The maximum number of significant digits of the result of a calculation or base conversion. | |
// E.g. `Decimal.config({ precision: 20 });` | |
precision: 20, // 1 to MAX_DIGITS | |
// The rounding mode used when rounding to `precision`. | |
// | |
// ROUND_UP 0 Away from zero. | |
// ROUND_DOWN 1 Towards zero. | |
// ROUND_CEIL 2 Towards +Infinity. | |
// ROUND_FLOOR 3 Towards -Infinity. | |
// ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up. | |
// ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. | |
// ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. | |
// ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. | |
// ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. | |
// | |
// E.g. | |
// `Decimal.rounding = 4;` | |
// `Decimal.rounding = Decimal.ROUND_HALF_UP;` | |
rounding: 4, // 0 to 8 | |
// The modulo mode used when calculating the modulus: a mod n. | |
// The quotient (q = a / n) is calculated according to the corresponding rounding mode. | |
// The remainder (r) is calculated as: r = a - n * q. | |
// | |
// UP 0 The remainder is positive if the dividend is negative, else is negative. | |
// DOWN 1 The remainder has the same sign as the dividend (JavaScript %). | |
// FLOOR 3 The remainder has the same sign as the divisor (Python %). | |
// HALF_EVEN 6 The IEEE 754 remainder function. | |
// EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive. | |
// | |
// Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian | |
// division (9) are commonly used for the modulus operation. The other rounding modes can also | |
// be used, but they may not give useful results. | |
modulo: 1, // 0 to 9 | |
// The exponent value at and beneath which `toString` returns exponential notation. | |
// JavaScript numbers: -7 | |
toExpNeg: -7, // 0 to -EXP_LIMIT | |
// The exponent value at and above which `toString` returns exponential notation. | |
// JavaScript numbers: 21 | |
toExpPos: 21, // 0 to EXP_LIMIT | |
// The minimum exponent value, beneath which underflow to zero occurs. | |
// JavaScript numbers: -324 (5e-324) | |
minE: -EXP_LIMIT, // -1 to -EXP_LIMIT | |
// The maximum exponent value, above which overflow to Infinity occurs. | |
// JavaScript numbers: 308 (1.7976931348623157e+308) | |
maxE: EXP_LIMIT, // 1 to EXP_LIMIT | |
// Whether to use cryptographically-secure random number generation, if available. | |
crypto: false // true/false | |
}, | |
// ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- // | |
inexact, quadrant, | |
external = true, | |
decimalError = '[DecimalError] ', | |
invalidArgument = decimalError + 'Invalid argument: ', | |
precisionLimitExceeded = decimalError + 'Precision limit exceeded', | |
cryptoUnavailable = decimalError + 'crypto unavailable', | |
tag = '[object Decimal]', | |
mathfloor = Math.floor, | |
mathpow = Math.pow, | |
isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i, | |
isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i, | |
isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i, | |
isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i, | |
BASE = 1e7, | |
LOG_BASE = 7, | |
MAX_SAFE_INTEGER = 9007199254740991, | |
LN10_PRECISION = LN10.length - 1, | |
PI_PRECISION = PI.length - 1, | |
// Decimal.prototype object | |
P = { toStringTag: tag }; | |
// Decimal prototype methods | |
/* | |
* absoluteValue abs | |
* ceil | |
* clampedTo clamp | |
* comparedTo cmp | |
* cosine cos | |
* cubeRoot cbrt | |
* decimalPlaces dp | |
* dividedBy div | |
* dividedToIntegerBy divToInt | |
* equals eq | |
* floor | |
* greaterThan gt | |
* greaterThanOrEqualTo gte | |
* hyperbolicCosine cosh | |
* hyperbolicSine sinh | |
* hyperbolicTangent tanh | |
* inverseCosine acos | |
* inverseHyperbolicCosine acosh | |
* inverseHyperbolicSine asinh | |
* inverseHyperbolicTangent atanh | |
* inverseSine asin | |
* inverseTangent atan | |
* isFinite | |
* isInteger isInt | |
* isNaN | |
* isNegative isNeg | |
* isPositive isPos | |
* isZero | |
* lessThan lt | |
* lessThanOrEqualTo lte | |
* logarithm log | |
* [maximum] [max] | |
* [minimum] [min] | |
* minus sub | |
* modulo mod | |
* naturalExponential exp | |
* naturalLogarithm ln | |
* negated neg | |
* plus add | |
* precision sd | |
* round | |
* sine sin | |
* squareRoot sqrt | |
* tangent tan | |
* times mul | |
* toBinary | |
* toDecimalPlaces toDP | |
* toExponential | |
* toFixed | |
* toFraction | |
* toHexadecimal toHex | |
* toNearest | |
* toNumber | |
* toOctal | |
* toPower pow | |
* toPrecision | |
* toSignificantDigits toSD | |
* toString | |
* truncated trunc | |
* valueOf toJSON | |
*/ | |
/* | |
* Return a new Decimal whose value is the absolute value of this Decimal. | |
* | |
*/ | |
P.absoluteValue = P.abs = function () { | |
var x = new this.constructor(this); | |
if (x.s < 0) x.s = 1; | |
return finalise(x); | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the | |
* direction of positive Infinity. | |
* | |
*/ | |
P.ceil = function () { | |
return finalise(new this.constructor(this), this.e + 1, 2); | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal clamped to the range | |
* delineated by `min` and `max`. | |
* | |
* min {number|string|Decimal} | |
* max {number|string|Decimal} | |
* | |
*/ | |
P.clampedTo = P.clamp = function (min, max) { | |
var k, | |
x = this, | |
Ctor = x.constructor; | |
min = new Ctor(min); | |
max = new Ctor(max); | |
if (!min.s || !max.s) return new Ctor(NaN); | |
if (min.gt(max)) throw Error(invalidArgument + max); | |
k = x.cmp(min); | |
return k < 0 ? min : x.cmp(max) > 0 ? max : new Ctor(x); | |
}; | |
/* | |
* Return | |
* 1 if the value of this Decimal is greater than the value of `y`, | |
* -1 if the value of this Decimal is less than the value of `y`, | |
* 0 if they have the same value, | |
* NaN if the value of either Decimal is NaN. | |
* | |
*/ | |
P.comparedTo = P.cmp = function (y) { | |
var i, j, xdL, ydL, | |
x = this, | |
xd = x.d, | |
yd = (y = new x.constructor(y)).d, | |
xs = x.s, | |
ys = y.s; | |
// Either NaN or ±Infinity? | |
if (!xd || !yd) { | |
return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1; | |
} | |
// Either zero? | |
if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0; | |
// Signs differ? | |
if (xs !== ys) return xs; | |
// Compare exponents. | |
if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1; | |
xdL = xd.length; | |
ydL = yd.length; | |
// Compare digit by digit. | |
for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) { | |
if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1; | |
} | |
// Compare lengths. | |
return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1; | |
}; | |
/* | |
* Return a new Decimal whose value is the cosine of the value in radians of this Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-1, 1] | |
* | |
* cos(0) = 1 | |
* cos(-0) = 1 | |
* cos(Infinity) = NaN | |
* cos(-Infinity) = NaN | |
* cos(NaN) = NaN | |
* | |
*/ | |
P.cosine = P.cos = function () { | |
var pr, rm, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.d) return new Ctor(NaN); | |
// cos(0) = cos(-0) = 1 | |
if (!x.d[0]) return new Ctor(1); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; | |
Ctor.rounding = 1; | |
x = cosine(Ctor, toLessThanHalfPi(Ctor, x)); | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true); | |
}; | |
/* | |
* | |
* Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to | |
* `precision` significant digits using rounding mode `rounding`. | |
* | |
* cbrt(0) = 0 | |
* cbrt(-0) = -0 | |
* cbrt(1) = 1 | |
* cbrt(-1) = -1 | |
* cbrt(N) = N | |
* cbrt(-I) = -I | |
* cbrt(I) = I | |
* | |
* Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3)) | |
* | |
*/ | |
P.cubeRoot = P.cbrt = function () { | |
var e, m, n, r, rep, s, sd, t, t3, t3plusx, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.isFinite() || x.isZero()) return new Ctor(x); | |
external = false; | |
// Initial estimate. | |
s = x.s * mathpow(x.s * x, 1 / 3); | |
// Math.cbrt underflow/overflow? | |
// Pass x to Math.pow as integer, then adjust the exponent of the result. | |
if (!s || Math.abs(s) == 1 / 0) { | |
n = digitsToString(x.d); | |
e = x.e; | |
// Adjust n exponent so it is a multiple of 3 away from x exponent. | |
if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00'); | |
s = mathpow(n, 1 / 3); | |
// Rarely, e may be one less than the result exponent value. | |
e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2)); | |
if (s == 1 / 0) { | |
n = '5e' + e; | |
} else { | |
n = s.toExponential(); | |
n = n.slice(0, n.indexOf('e') + 1) + e; | |
} | |
r = new Ctor(n); | |
r.s = x.s; | |
} else { | |
r = new Ctor(s.toString()); | |
} | |
sd = (e = Ctor.precision) + 3; | |
// Halley's method. | |
// TODO? Compare Newton's method. | |
for (;;) { | |
t = r; | |
t3 = t.times(t).times(t); | |
t3plusx = t3.plus(x); | |
r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1); | |
// TODO? Replace with for-loop and checkRoundingDigits. | |
if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { | |
n = n.slice(sd - 3, sd + 1); | |
// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999 | |
// , i.e. approaching a rounding boundary, continue the iteration. | |
if (n == '9999' || !rep && n == '4999') { | |
// On the first iteration only, check to see if rounding up gives the exact result as the | |
// nines may infinitely repeat. | |
if (!rep) { | |
finalise(t, e + 1, 0); | |
if (t.times(t).times(t).eq(x)) { | |
r = t; | |
break; | |
} | |
} | |
sd += 4; | |
rep = 1; | |
} else { | |
// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result. | |
// If not, then there are further digits and m will be truthy. | |
if (!+n || !+n.slice(1) && n.charAt(0) == '5') { | |
// Truncate to the first rounding digit. | |
finalise(r, e + 1, 1); | |
m = !r.times(r).times(r).eq(x); | |
} | |
break; | |
} | |
} | |
} | |
external = true; | |
return finalise(r, e, Ctor.rounding, m); | |
}; | |
/* | |
* Return the number of decimal places of the value of this Decimal. | |
* | |
*/ | |
P.decimalPlaces = P.dp = function () { | |
var w, | |
d = this.d, | |
n = NaN; | |
if (d) { | |
w = d.length - 1; | |
n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE; | |
// Subtract the number of trailing zeros of the last word. | |
w = d[w]; | |
if (w) for (; w % 10 == 0; w /= 10) n--; | |
if (n < 0) n = 0; | |
} | |
return n; | |
}; | |
/* | |
* n / 0 = I | |
* n / N = N | |
* n / I = 0 | |
* 0 / n = 0 | |
* 0 / 0 = N | |
* 0 / N = N | |
* 0 / I = 0 | |
* N / n = N | |
* N / 0 = N | |
* N / N = N | |
* N / I = N | |
* I / n = I | |
* I / 0 = I | |
* I / N = N | |
* I / I = N | |
* | |
* Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to | |
* `precision` significant digits using rounding mode `rounding`. | |
* | |
*/ | |
P.dividedBy = P.div = function (y) { | |
return divide(this, new this.constructor(y)); | |
}; | |
/* | |
* Return a new Decimal whose value is the integer part of dividing the value of this Decimal | |
* by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`. | |
* | |
*/ | |
P.dividedToIntegerBy = P.divToInt = function (y) { | |
var x = this, | |
Ctor = x.constructor; | |
return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding); | |
}; | |
/* | |
* Return true if the value of this Decimal is equal to the value of `y`, otherwise return false. | |
* | |
*/ | |
P.equals = P.eq = function (y) { | |
return this.cmp(y) === 0; | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the | |
* direction of negative Infinity. | |
* | |
*/ | |
P.floor = function () { | |
return finalise(new this.constructor(this), this.e + 1, 3); | |
}; | |
/* | |
* Return true if the value of this Decimal is greater than the value of `y`, otherwise return | |
* false. | |
* | |
*/ | |
P.greaterThan = P.gt = function (y) { | |
return this.cmp(y) > 0; | |
}; | |
/* | |
* Return true if the value of this Decimal is greater than or equal to the value of `y`, | |
* otherwise return false. | |
* | |
*/ | |
P.greaterThanOrEqualTo = P.gte = function (y) { | |
var k = this.cmp(y); | |
return k == 1 || k === 0; | |
}; | |
/* | |
* Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this | |
* Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [1, Infinity] | |
* | |
* cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ... | |
* | |
* cosh(0) = 1 | |
* cosh(-0) = 1 | |
* cosh(Infinity) = Infinity | |
* cosh(-Infinity) = Infinity | |
* cosh(NaN) = NaN | |
* | |
* x time taken (ms) result | |
* 1000 9 9.8503555700852349694e+433 | |
* 10000 25 4.4034091128314607936e+4342 | |
* 100000 171 1.4033316802130615897e+43429 | |
* 1000000 3817 1.5166076984010437725e+434294 | |
* 10000000 abandoned after 2 minute wait | |
* | |
* TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x)) | |
* | |
*/ | |
P.hyperbolicCosine = P.cosh = function () { | |
var k, n, pr, rm, len, | |
x = this, | |
Ctor = x.constructor, | |
one = new Ctor(1); | |
if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN); | |
if (x.isZero()) return one; | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; | |
Ctor.rounding = 1; | |
len = x.d.length; | |
// Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1 | |
// i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4)) | |
// Estimate the optimum number of times to use the argument reduction. | |
// TODO? Estimation reused from cosine() and may not be optimal here. | |
if (len < 32) { | |
k = Math.ceil(len / 3); | |
n = (1 / tinyPow(4, k)).toString(); | |
} else { | |
k = 16; | |
n = '2.3283064365386962890625e-10'; | |
} | |
x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true); | |
// Reverse argument reduction | |
var cosh2_x, | |
i = k, | |
d8 = new Ctor(8); | |
for (; i--;) { | |
cosh2_x = x.times(x); | |
x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8)))); | |
} | |
return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true); | |
}; | |
/* | |
* Return a new Decimal whose value is the hyperbolic sine of the value in radians of this | |
* Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-Infinity, Infinity] | |
* | |
* sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ... | |
* | |
* sinh(0) = 0 | |
* sinh(-0) = -0 | |
* sinh(Infinity) = Infinity | |
* sinh(-Infinity) = -Infinity | |
* sinh(NaN) = NaN | |
* | |
* x time taken (ms) | |
* 10 2 ms | |
* 100 5 ms | |
* 1000 14 ms | |
* 10000 82 ms | |
* 100000 886 ms 1.4033316802130615897e+43429 | |
* 200000 2613 ms | |
* 300000 5407 ms | |
* 400000 8824 ms | |
* 500000 13026 ms 8.7080643612718084129e+217146 | |
* 1000000 48543 ms | |
* | |
* TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x)) | |
* | |
*/ | |
P.hyperbolicSine = P.sinh = function () { | |
var k, pr, rm, len, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.isFinite() || x.isZero()) return new Ctor(x); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; | |
Ctor.rounding = 1; | |
len = x.d.length; | |
if (len < 3) { | |
x = taylorSeries(Ctor, 2, x, x, true); | |
} else { | |
// Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x)) | |
// i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3)) | |
// 3 multiplications and 1 addition | |
// Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x))) | |
// i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5))) | |
// 4 multiplications and 2 additions | |
// Estimate the optimum number of times to use the argument reduction. | |
k = 1.4 * Math.sqrt(len); | |
k = k > 16 ? 16 : k | 0; | |
x = x.times(1 / tinyPow(5, k)); | |
x = taylorSeries(Ctor, 2, x, x, true); | |
// Reverse argument reduction | |
var sinh2_x, | |
d5 = new Ctor(5), | |
d16 = new Ctor(16), | |
d20 = new Ctor(20); | |
for (; k--;) { | |
sinh2_x = x.times(x); | |
x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20)))); | |
} | |
} | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return finalise(x, pr, rm, true); | |
}; | |
/* | |
* Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this | |
* Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-1, 1] | |
* | |
* tanh(x) = sinh(x) / cosh(x) | |
* | |
* tanh(0) = 0 | |
* tanh(-0) = -0 | |
* tanh(Infinity) = 1 | |
* tanh(-Infinity) = -1 | |
* tanh(NaN) = NaN | |
* | |
*/ | |
P.hyperbolicTangent = P.tanh = function () { | |
var pr, rm, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.isFinite()) return new Ctor(x.s); | |
if (x.isZero()) return new Ctor(x); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + 7; | |
Ctor.rounding = 1; | |
return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm); | |
}; | |
/* | |
* Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of | |
* this Decimal. | |
* | |
* Domain: [-1, 1] | |
* Range: [0, pi] | |
* | |
* acos(x) = pi/2 - asin(x) | |
* | |
* acos(0) = pi/2 | |
* acos(-0) = pi/2 | |
* acos(1) = 0 | |
* acos(-1) = pi | |
* acos(1/2) = pi/3 | |
* acos(-1/2) = 2*pi/3 | |
* acos(|x| > 1) = NaN | |
* acos(NaN) = NaN | |
* | |
*/ | |
P.inverseCosine = P.acos = function () { | |
var halfPi, | |
x = this, | |
Ctor = x.constructor, | |
k = x.abs().cmp(1), | |
pr = Ctor.precision, | |
rm = Ctor.rounding; | |
if (k !== -1) { | |
return k === 0 | |
// |x| is 1 | |
? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0) | |
// |x| > 1 or x is NaN | |
: new Ctor(NaN); | |
} | |
if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5); | |
// TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3 | |
Ctor.precision = pr + 6; | |
Ctor.rounding = 1; | |
x = x.asin(); | |
halfPi = getPi(Ctor, pr + 4, rm).times(0.5); | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return halfPi.minus(x); | |
}; | |
/* | |
* Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the | |
* value of this Decimal. | |
* | |
* Domain: [1, Infinity] | |
* Range: [0, Infinity] | |
* | |
* acosh(x) = ln(x + sqrt(x^2 - 1)) | |
* | |
* acosh(x < 1) = NaN | |
* acosh(NaN) = NaN | |
* acosh(Infinity) = Infinity | |
* acosh(-Infinity) = NaN | |
* acosh(0) = NaN | |
* acosh(-0) = NaN | |
* acosh(1) = 0 | |
* acosh(-1) = NaN | |
* | |
*/ | |
P.inverseHyperbolicCosine = P.acosh = function () { | |
var pr, rm, | |
x = this, | |
Ctor = x.constructor; | |
if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN); | |
if (!x.isFinite()) return new Ctor(x); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4; | |
Ctor.rounding = 1; | |
external = false; | |
x = x.times(x).minus(1).sqrt().plus(x); | |
external = true; | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return x.ln(); | |
}; | |
/* | |
* Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value | |
* of this Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-Infinity, Infinity] | |
* | |
* asinh(x) = ln(x + sqrt(x^2 + 1)) | |
* | |
* asinh(NaN) = NaN | |
* asinh(Infinity) = Infinity | |
* asinh(-Infinity) = -Infinity | |
* asinh(0) = 0 | |
* asinh(-0) = -0 | |
* | |
*/ | |
P.inverseHyperbolicSine = P.asinh = function () { | |
var pr, rm, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.isFinite() || x.isZero()) return new Ctor(x); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6; | |
Ctor.rounding = 1; | |
external = false; | |
x = x.times(x).plus(1).sqrt().plus(x); | |
external = true; | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return x.ln(); | |
}; | |
/* | |
* Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the | |
* value of this Decimal. | |
* | |
* Domain: [-1, 1] | |
* Range: [-Infinity, Infinity] | |
* | |
* atanh(x) = 0.5 * ln((1 + x) / (1 - x)) | |
* | |
* atanh(|x| > 1) = NaN | |
* atanh(NaN) = NaN | |
* atanh(Infinity) = NaN | |
* atanh(-Infinity) = NaN | |
* atanh(0) = 0 | |
* atanh(-0) = -0 | |
* atanh(1) = Infinity | |
* atanh(-1) = -Infinity | |
* | |
*/ | |
P.inverseHyperbolicTangent = P.atanh = function () { | |
var pr, rm, wpr, xsd, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.isFinite()) return new Ctor(NaN); | |
if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
xsd = x.sd(); | |
if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true); | |
Ctor.precision = wpr = xsd - x.e; | |
x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1); | |
Ctor.precision = pr + 4; | |
Ctor.rounding = 1; | |
x = x.ln(); | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return x.times(0.5); | |
}; | |
/* | |
* Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this | |
* Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-pi/2, pi/2] | |
* | |
* asin(x) = 2*atan(x/(1 + sqrt(1 - x^2))) | |
* | |
* asin(0) = 0 | |
* asin(-0) = -0 | |
* asin(1/2) = pi/6 | |
* asin(-1/2) = -pi/6 | |
* asin(1) = pi/2 | |
* asin(-1) = -pi/2 | |
* asin(|x| > 1) = NaN | |
* asin(NaN) = NaN | |
* | |
* TODO? Compare performance of Taylor series. | |
* | |
*/ | |
P.inverseSine = P.asin = function () { | |
var halfPi, k, | |
pr, rm, | |
x = this, | |
Ctor = x.constructor; | |
if (x.isZero()) return new Ctor(x); | |
k = x.abs().cmp(1); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
if (k !== -1) { | |
// |x| is 1 | |
if (k === 0) { | |
halfPi = getPi(Ctor, pr + 4, rm).times(0.5); | |
halfPi.s = x.s; | |
return halfPi; | |
} | |
// |x| > 1 or x is NaN | |
return new Ctor(NaN); | |
} | |
// TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6 | |
Ctor.precision = pr + 6; | |
Ctor.rounding = 1; | |
x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan(); | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return x.times(2); | |
}; | |
/* | |
* Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value | |
* of this Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-pi/2, pi/2] | |
* | |
* atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... | |
* | |
* atan(0) = 0 | |
* atan(-0) = -0 | |
* atan(1) = pi/4 | |
* atan(-1) = -pi/4 | |
* atan(Infinity) = pi/2 | |
* atan(-Infinity) = -pi/2 | |
* atan(NaN) = NaN | |
* | |
*/ | |
P.inverseTangent = P.atan = function () { | |
var i, j, k, n, px, t, r, wpr, x2, | |
x = this, | |
Ctor = x.constructor, | |
pr = Ctor.precision, | |
rm = Ctor.rounding; | |
if (!x.isFinite()) { | |
if (!x.s) return new Ctor(NaN); | |
if (pr + 4 <= PI_PRECISION) { | |
r = getPi(Ctor, pr + 4, rm).times(0.5); | |
r.s = x.s; | |
return r; | |
} | |
} else if (x.isZero()) { | |
return new Ctor(x); | |
} else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) { | |
r = getPi(Ctor, pr + 4, rm).times(0.25); | |
r.s = x.s; | |
return r; | |
} | |
Ctor.precision = wpr = pr + 10; | |
Ctor.rounding = 1; | |
// TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x); | |
// Argument reduction | |
// Ensure |x| < 0.42 | |
// atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2))) | |
k = Math.min(28, wpr / LOG_BASE + 2 | 0); | |
for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1)); | |
external = false; | |
j = Math.ceil(wpr / LOG_BASE); | |
n = 1; | |
x2 = x.times(x); | |
r = new Ctor(x); | |
px = x; | |
// atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... | |
for (; i !== -1;) { | |
px = px.times(x2); | |
t = r.minus(px.div(n += 2)); | |
px = px.times(x2); | |
r = t.plus(px.div(n += 2)); | |
if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--;); | |
} | |
if (k) r = r.times(2 << (k - 1)); | |
external = true; | |
return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true); | |
}; | |
/* | |
* Return true if the value of this Decimal is a finite number, otherwise return false. | |
* | |
*/ | |
P.isFinite = function () { | |
return !!this.d; | |
}; | |
/* | |
* Return true if the value of this Decimal is an integer, otherwise return false. | |
* | |
*/ | |
P.isInteger = P.isInt = function () { | |
return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2; | |
}; | |
/* | |
* Return true if the value of this Decimal is NaN, otherwise return false. | |
* | |
*/ | |
P.isNaN = function () { | |
return !this.s; | |
}; | |
/* | |
* Return true if the value of this Decimal is negative, otherwise return false. | |
* | |
*/ | |
P.isNegative = P.isNeg = function () { | |
return this.s < 0; | |
}; | |
/* | |
* Return true if the value of this Decimal is positive, otherwise return false. | |
* | |
*/ | |
P.isPositive = P.isPos = function () { | |
return this.s > 0; | |
}; | |
/* | |
* Return true if the value of this Decimal is 0 or -0, otherwise return false. | |
* | |
*/ | |
P.isZero = function () { | |
return !!this.d && this.d[0] === 0; | |
}; | |
/* | |
* Return true if the value of this Decimal is less than `y`, otherwise return false. | |
* | |
*/ | |
P.lessThan = P.lt = function (y) { | |
return this.cmp(y) < 0; | |
}; | |
/* | |
* Return true if the value of this Decimal is less than or equal to `y`, otherwise return false. | |
* | |
*/ | |
P.lessThanOrEqualTo = P.lte = function (y) { | |
return this.cmp(y) < 1; | |
}; | |
/* | |
* Return the logarithm of the value of this Decimal to the specified base, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* If no base is specified, return log[10](arg). | |
* | |
* log[base](arg) = ln(arg) / ln(base) | |
* | |
* The result will always be correctly rounded if the base of the log is 10, and 'almost always' | |
* otherwise: | |
* | |
* Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen | |
* rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error | |
* between the result and the correctly rounded result will be one ulp (unit in the last place). | |
* | |
* log[-b](a) = NaN | |
* log[0](a) = NaN | |
* log[1](a) = NaN | |
* log[NaN](a) = NaN | |
* log[Infinity](a) = NaN | |
* log[b](0) = -Infinity | |
* log[b](-0) = -Infinity | |
* log[b](-a) = NaN | |
* log[b](1) = 0 | |
* log[b](Infinity) = Infinity | |
* log[b](NaN) = NaN | |
* | |
* [base] {number|string|Decimal} The base of the logarithm. | |
* | |
*/ | |
P.logarithm = P.log = function (base) { | |
var isBase10, d, denominator, k, inf, num, sd, r, | |
arg = this, | |
Ctor = arg.constructor, | |
pr = Ctor.precision, | |
rm = Ctor.rounding, | |
guard = 5; | |
// Default base is 10. | |
if (base == null) { | |
base = new Ctor(10); | |
isBase10 = true; | |
} else { | |
base = new Ctor(base); | |
d = base.d; | |
// Return NaN if base is negative, or non-finite, or is 0 or 1. | |
if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN); | |
isBase10 = base.eq(10); | |
} | |
d = arg.d; | |
// Is arg negative, non-finite, 0 or 1? | |
if (arg.s < 0 || !d || !d[0] || arg.eq(1)) { | |
return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0); | |
} | |
// The result will have a non-terminating decimal expansion if base is 10 and arg is not an | |
// integer power of 10. | |
if (isBase10) { | |
if (d.length > 1) { | |
inf = true; | |
} else { | |
for (k = d[0]; k % 10 === 0;) k /= 10; | |
inf = k !== 1; | |
} | |
} | |
external = false; | |
sd = pr + guard; | |
num = naturalLogarithm(arg, sd); | |
denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); | |
// The result will have 5 rounding digits. | |
r = divide(num, denominator, sd, 1); | |
// If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000, | |
// calculate 10 further digits. | |
// | |
// If the result is known to have an infinite decimal expansion, repeat this until it is clear | |
// that the result is above or below the boundary. Otherwise, if after calculating the 10 | |
// further digits, the last 14 are nines, round up and assume the result is exact. | |
// Also assume the result is exact if the last 14 are zero. | |
// | |
// Example of a result that will be incorrectly rounded: | |
// log[1048576](4503599627370502) = 2.60000000000000009610279511444746... | |
// The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it | |
// will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so | |
// the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal | |
// place is still 2.6. | |
if (checkRoundingDigits(r.d, k = pr, rm)) { | |
do { | |
sd += 10; | |
num = naturalLogarithm(arg, sd); | |
denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); | |
r = divide(num, denominator, sd, 1); | |
if (!inf) { | |
// Check for 14 nines from the 2nd rounding digit, as the first may be 4. | |
if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) { | |
r = finalise(r, pr + 1, 0); | |
} | |
break; | |
} | |
} while (checkRoundingDigits(r.d, k += 10, rm)); | |
} | |
external = true; | |
return finalise(r, pr, rm); | |
}; | |
/* | |
* Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal. | |
* | |
* arguments {number|string|Decimal} | |
* | |
P.max = function () { | |
Array.prototype.push.call(arguments, this); | |
return maxOrMin(this.constructor, arguments, 'lt'); | |
}; | |
*/ | |
/* | |
* Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal. | |
* | |
* arguments {number|string|Decimal} | |
* | |
P.min = function () { | |
Array.prototype.push.call(arguments, this); | |
return maxOrMin(this.constructor, arguments, 'gt'); | |
}; | |
*/ | |
/* | |
* n - 0 = n | |
* n - N = N | |
* n - I = -I | |
* 0 - n = -n | |
* 0 - 0 = 0 | |
* 0 - N = N | |
* 0 - I = -I | |
* N - n = N | |
* N - 0 = N | |
* N - N = N | |
* N - I = N | |
* I - n = I | |
* I - 0 = I | |
* I - N = N | |
* I - I = N | |
* | |
* Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
*/ | |
P.minus = P.sub = function (y) { | |
var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd, | |
x = this, | |
Ctor = x.constructor; | |
y = new Ctor(y); | |
// If either is not finite... | |
if (!x.d || !y.d) { | |
// Return NaN if either is NaN. | |
if (!x.s || !y.s) y = new Ctor(NaN); | |
// Return y negated if x is finite and y is ±Infinity. | |
else if (x.d) y.s = -y.s; | |
// Return x if y is finite and x is ±Infinity. | |
// Return x if both are ±Infinity with different signs. | |
// Return NaN if both are ±Infinity with the same sign. | |
else y = new Ctor(y.d || x.s !== y.s ? x : NaN); | |
return y; | |
} | |
// If signs differ... | |
if (x.s != y.s) { | |
y.s = -y.s; | |
return x.plus(y); | |
} | |
xd = x.d; | |
yd = y.d; | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
// If either is zero... | |
if (!xd[0] || !yd[0]) { | |
// Return y negated if x is zero and y is non-zero. | |
if (yd[0]) y.s = -y.s; | |
// Return x if y is zero and x is non-zero. | |
else if (xd[0]) y = new Ctor(x); | |
// Return zero if both are zero. | |
// From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity. | |
else return new Ctor(rm === 3 ? -0 : 0); | |
return external ? finalise(y, pr, rm) : y; | |
} | |
// x and y are finite, non-zero numbers with the same sign. | |
// Calculate base 1e7 exponents. | |
e = mathfloor(y.e / LOG_BASE); | |
xe = mathfloor(x.e / LOG_BASE); | |
xd = xd.slice(); | |
k = xe - e; | |
// If base 1e7 exponents differ... | |
if (k) { | |
xLTy = k < 0; | |
if (xLTy) { | |
d = xd; | |
k = -k; | |
len = yd.length; | |
} else { | |
d = yd; | |
e = xe; | |
len = xd.length; | |
} | |
// Numbers with massively different exponents would result in a very high number of | |
// zeros needing to be prepended, but this can be avoided while still ensuring correct | |
// rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`. | |
i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2; | |
if (k > i) { | |
k = i; | |
d.length = 1; | |
} | |
// Prepend zeros to equalise exponents. | |
d.reverse(); | |
for (i = k; i--;) d.push(0); | |
d.reverse(); | |
// Base 1e7 exponents equal. | |
} else { | |
// Check digits to determine which is the bigger number. | |
i = xd.length; | |
len = yd.length; | |
xLTy = i < len; | |
if (xLTy) len = i; | |
for (i = 0; i < len; i++) { | |
if (xd[i] != yd[i]) { | |
xLTy = xd[i] < yd[i]; | |
break; | |
} | |
} | |
k = 0; | |
} | |
if (xLTy) { | |
d = xd; | |
xd = yd; | |
yd = d; | |
y.s = -y.s; | |
} | |
len = xd.length; | |
// Append zeros to `xd` if shorter. | |
// Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length. | |
for (i = yd.length - len; i > 0; --i) xd[len++] = 0; | |
// Subtract yd from xd. | |
for (i = yd.length; i > k;) { | |
if (xd[--i] < yd[i]) { | |
for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1; | |
--xd[j]; | |
xd[i] += BASE; | |
} | |
xd[i] -= yd[i]; | |
} | |
// Remove trailing zeros. | |
for (; xd[--len] === 0;) xd.pop(); | |
// Remove leading zeros and adjust exponent accordingly. | |
for (; xd[0] === 0; xd.shift()) --e; | |
// Zero? | |
if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0); | |
y.d = xd; | |
y.e = getBase10Exponent(xd, e); | |
return external ? finalise(y, pr, rm) : y; | |
}; | |
/* | |
* n % 0 = N | |
* n % N = N | |
* n % I = n | |
* 0 % n = 0 | |
* -0 % n = -0 | |
* 0 % 0 = N | |
* 0 % N = N | |
* 0 % I = 0 | |
* N % n = N | |
* N % 0 = N | |
* N % N = N | |
* N % I = N | |
* I % n = N | |
* I % 0 = N | |
* I % N = N | |
* I % I = N | |
* | |
* Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to | |
* `precision` significant digits using rounding mode `rounding`. | |
* | |
* The result depends on the modulo mode. | |
* | |
*/ | |
P.modulo = P.mod = function (y) { | |
var q, | |
x = this, | |
Ctor = x.constructor; | |
y = new Ctor(y); | |
// Return NaN if x is ±Infinity or NaN, or y is NaN or ±0. | |
if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN); | |
// Return x if y is ±Infinity or x is ±0. | |
if (!y.d || x.d && !x.d[0]) { | |
return finalise(new Ctor(x), Ctor.precision, Ctor.rounding); | |
} | |
// Prevent rounding of intermediate calculations. | |
external = false; | |
if (Ctor.modulo == 9) { | |
// Euclidian division: q = sign(y) * floor(x / abs(y)) | |
// result = x - q * y where 0 <= result < abs(y) | |
q = divide(x, y.abs(), 0, 3, 1); | |
q.s *= y.s; | |
} else { | |
q = divide(x, y, 0, Ctor.modulo, 1); | |
} | |
q = q.times(y); | |
external = true; | |
return x.minus(q); | |
}; | |
/* | |
* Return a new Decimal whose value is the natural exponential of the value of this Decimal, | |
* i.e. the base e raised to the power the value of this Decimal, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
*/ | |
P.naturalExponential = P.exp = function () { | |
return naturalExponential(this); | |
}; | |
/* | |
* Return a new Decimal whose value is the natural logarithm of the value of this Decimal, | |
* rounded to `precision` significant digits using rounding mode `rounding`. | |
* | |
*/ | |
P.naturalLogarithm = P.ln = function () { | |
return naturalLogarithm(this); | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by | |
* -1. | |
* | |
*/ | |
P.negated = P.neg = function () { | |
var x = new this.constructor(this); | |
x.s = -x.s; | |
return finalise(x); | |
}; | |
/* | |
* n + 0 = n | |
* n + N = N | |
* n + I = I | |
* 0 + n = n | |
* 0 + 0 = 0 | |
* 0 + N = N | |
* 0 + I = I | |
* N + n = N | |
* N + 0 = N | |
* N + N = N | |
* N + I = N | |
* I + n = I | |
* I + 0 = I | |
* I + N = N | |
* I + I = I | |
* | |
* Return a new Decimal whose value is the value of this Decimal plus `y`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
*/ | |
P.plus = P.add = function (y) { | |
var carry, d, e, i, k, len, pr, rm, xd, yd, | |
x = this, | |
Ctor = x.constructor; | |
y = new Ctor(y); | |
// If either is not finite... | |
if (!x.d || !y.d) { | |
// Return NaN if either is NaN. | |
if (!x.s || !y.s) y = new Ctor(NaN); | |
// Return x if y is finite and x is ±Infinity. | |
// Return x if both are ±Infinity with the same sign. | |
// Return NaN if both are ±Infinity with different signs. | |
// Return y if x is finite and y is ±Infinity. | |
else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN); | |
return y; | |
} | |
// If signs differ... | |
if (x.s != y.s) { | |
y.s = -y.s; | |
return x.minus(y); | |
} | |
xd = x.d; | |
yd = y.d; | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
// If either is zero... | |
if (!xd[0] || !yd[0]) { | |
// Return x if y is zero. | |
// Return y if y is non-zero. | |
if (!yd[0]) y = new Ctor(x); | |
return external ? finalise(y, pr, rm) : y; | |
} | |
// x and y are finite, non-zero numbers with the same sign. | |
// Calculate base 1e7 exponents. | |
k = mathfloor(x.e / LOG_BASE); | |
e = mathfloor(y.e / LOG_BASE); | |
xd = xd.slice(); | |
i = k - e; | |
// If base 1e7 exponents differ... | |
if (i) { | |
if (i < 0) { | |
d = xd; | |
i = -i; | |
len = yd.length; | |
} else { | |
d = yd; | |
e = k; | |
len = xd.length; | |
} | |
// Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1. | |
k = Math.ceil(pr / LOG_BASE); | |
len = k > len ? k + 1 : len + 1; | |
if (i > len) { | |
i = len; | |
d.length = 1; | |
} | |
// Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts. | |
d.reverse(); | |
for (; i--;) d.push(0); | |
d.reverse(); | |
} | |
len = xd.length; | |
i = yd.length; | |
// If yd is longer than xd, swap xd and yd so xd points to the longer array. | |
if (len - i < 0) { | |
i = len; | |
d = yd; | |
yd = xd; | |
xd = d; | |
} | |
// Only start adding at yd.length - 1 as the further digits of xd can be left as they are. | |
for (carry = 0; i;) { | |
carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0; | |
xd[i] %= BASE; | |
} | |
if (carry) { | |
xd.unshift(carry); | |
++e; | |
} | |
// Remove trailing zeros. | |
// No need to check for zero, as +x + +y != 0 && -x + -y != 0 | |
for (len = xd.length; xd[--len] == 0;) xd.pop(); | |
y.d = xd; | |
y.e = getBase10Exponent(xd, e); | |
return external ? finalise(y, pr, rm) : y; | |
}; | |
/* | |
* Return the number of significant digits of the value of this Decimal. | |
* | |
* [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0. | |
* | |
*/ | |
P.precision = P.sd = function (z) { | |
var k, | |
x = this; | |
if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z); | |
if (x.d) { | |
k = getPrecision(x.d); | |
if (z && x.e + 1 > k) k = x.e + 1; | |
} else { | |
k = NaN; | |
} | |
return k; | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal rounded to a whole number using | |
* rounding mode `rounding`. | |
* | |
*/ | |
P.round = function () { | |
var x = this, | |
Ctor = x.constructor; | |
return finalise(new Ctor(x), x.e + 1, Ctor.rounding); | |
}; | |
/* | |
* Return a new Decimal whose value is the sine of the value in radians of this Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-1, 1] | |
* | |
* sin(x) = x - x^3/3! + x^5/5! - ... | |
* | |
* sin(0) = 0 | |
* sin(-0) = -0 | |
* sin(Infinity) = NaN | |
* sin(-Infinity) = NaN | |
* sin(NaN) = NaN | |
* | |
*/ | |
P.sine = P.sin = function () { | |
var pr, rm, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.isFinite()) return new Ctor(NaN); | |
if (x.isZero()) return new Ctor(x); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; | |
Ctor.rounding = 1; | |
x = sine(Ctor, toLessThanHalfPi(Ctor, x)); | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true); | |
}; | |
/* | |
* Return a new Decimal whose value is the square root of this Decimal, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* sqrt(-n) = N | |
* sqrt(N) = N | |
* sqrt(-I) = N | |
* sqrt(I) = I | |
* sqrt(0) = 0 | |
* sqrt(-0) = -0 | |
* | |
*/ | |
P.squareRoot = P.sqrt = function () { | |
var m, n, sd, r, rep, t, | |
x = this, | |
d = x.d, | |
e = x.e, | |
s = x.s, | |
Ctor = x.constructor; | |
// Negative/NaN/Infinity/zero? | |
if (s !== 1 || !d || !d[0]) { | |
return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0); | |
} | |
external = false; | |
// Initial estimate. | |
s = Math.sqrt(+x); | |
// Math.sqrt underflow/overflow? | |
// Pass x to Math.sqrt as integer, then adjust the exponent of the result. | |
if (s == 0 || s == 1 / 0) { | |
n = digitsToString(d); | |
if ((n.length + e) % 2 == 0) n += '0'; | |
s = Math.sqrt(n); | |
e = mathfloor((e + 1) / 2) - (e < 0 || e % 2); | |
if (s == 1 / 0) { | |
n = '5e' + e; | |
} else { | |
n = s.toExponential(); | |
n = n.slice(0, n.indexOf('e') + 1) + e; | |
} | |
r = new Ctor(n); | |
} else { | |
r = new Ctor(s.toString()); | |
} | |
sd = (e = Ctor.precision) + 3; | |
// Newton-Raphson iteration. | |
for (;;) { | |
t = r; | |
r = t.plus(divide(x, t, sd + 2, 1)).times(0.5); | |
// TODO? Replace with for-loop and checkRoundingDigits. | |
if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { | |
n = n.slice(sd - 3, sd + 1); | |
// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or | |
// 4999, i.e. approaching a rounding boundary, continue the iteration. | |
if (n == '9999' || !rep && n == '4999') { | |
// On the first iteration only, check to see if rounding up gives the exact result as the | |
// nines may infinitely repeat. | |
if (!rep) { | |
finalise(t, e + 1, 0); | |
if (t.times(t).eq(x)) { | |
r = t; | |
break; | |
} | |
} | |
sd += 4; | |
rep = 1; | |
} else { | |
// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result. | |
// If not, then there are further digits and m will be truthy. | |
if (!+n || !+n.slice(1) && n.charAt(0) == '5') { | |
// Truncate to the first rounding digit. | |
finalise(r, e + 1, 1); | |
m = !r.times(r).eq(x); | |
} | |
break; | |
} | |
} | |
} | |
external = true; | |
return finalise(r, e, Ctor.rounding, m); | |
}; | |
/* | |
* Return a new Decimal whose value is the tangent of the value in radians of this Decimal. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-Infinity, Infinity] | |
* | |
* tan(0) = 0 | |
* tan(-0) = -0 | |
* tan(Infinity) = NaN | |
* tan(-Infinity) = NaN | |
* tan(NaN) = NaN | |
* | |
*/ | |
P.tangent = P.tan = function () { | |
var pr, rm, | |
x = this, | |
Ctor = x.constructor; | |
if (!x.isFinite()) return new Ctor(NaN); | |
if (x.isZero()) return new Ctor(x); | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
Ctor.precision = pr + 10; | |
Ctor.rounding = 1; | |
x = x.sin(); | |
x.s = 1; | |
x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0); | |
Ctor.precision = pr; | |
Ctor.rounding = rm; | |
return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true); | |
}; | |
/* | |
* n * 0 = 0 | |
* n * N = N | |
* n * I = I | |
* 0 * n = 0 | |
* 0 * 0 = 0 | |
* 0 * N = N | |
* 0 * I = N | |
* N * n = N | |
* N * 0 = N | |
* N * N = N | |
* N * I = N | |
* I * n = I | |
* I * 0 = N | |
* I * N = N | |
* I * I = I | |
* | |
* Return a new Decimal whose value is this Decimal times `y`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
*/ | |
P.times = P.mul = function (y) { | |
var carry, e, i, k, r, rL, t, xdL, ydL, | |
x = this, | |
Ctor = x.constructor, | |
xd = x.d, | |
yd = (y = new Ctor(y)).d; | |
y.s *= x.s; | |
// If either is NaN, ±Infinity or ±0... | |
if (!xd || !xd[0] || !yd || !yd[0]) { | |
return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd | |
// Return NaN if either is NaN. | |
// Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity. | |
? NaN | |
// Return ±Infinity if either is ±Infinity. | |
// Return ±0 if either is ±0. | |
: !xd || !yd ? y.s / 0 : y.s * 0); | |
} | |
e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE); | |
xdL = xd.length; | |
ydL = yd.length; | |
// Ensure xd points to the longer array. | |
if (xdL < ydL) { | |
r = xd; | |
xd = yd; | |
yd = r; | |
rL = xdL; | |
xdL = ydL; | |
ydL = rL; | |
} | |
// Initialise the result array with zeros. | |
r = []; | |
rL = xdL + ydL; | |
for (i = rL; i--;) r.push(0); | |
// Multiply! | |
for (i = ydL; --i >= 0;) { | |
carry = 0; | |
for (k = xdL + i; k > i;) { | |
t = r[k] + yd[i] * xd[k - i - 1] + carry; | |
r[k--] = t % BASE | 0; | |
carry = t / BASE | 0; | |
} | |
r[k] = (r[k] + carry) % BASE | 0; | |
} | |
// Remove trailing zeros. | |
for (; !r[--rL];) r.pop(); | |
if (carry) ++e; | |
else r.shift(); | |
y.d = r; | |
y.e = getBase10Exponent(r, e); | |
return external ? finalise(y, Ctor.precision, Ctor.rounding) : y; | |
}; | |
/* | |
* Return a string representing the value of this Decimal in base 2, round to `sd` significant | |
* digits using rounding mode `rm`. | |
* | |
* If the optional `sd` argument is present then return binary exponential notation. | |
* | |
* [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
*/ | |
P.toBinary = function (sd, rm) { | |
return toStringBinary(this, 2, sd, rm); | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp` | |
* decimal places using rounding mode `rm` or `rounding` if `rm` is omitted. | |
* | |
* If `dp` is omitted, return a new Decimal whose value is the value of this Decimal. | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
*/ | |
P.toDecimalPlaces = P.toDP = function (dp, rm) { | |
var x = this, | |
Ctor = x.constructor; | |
x = new Ctor(x); | |
if (dp === void 0) return x; | |
checkInt32(dp, 0, MAX_DIGITS); | |
if (rm === void 0) rm = Ctor.rounding; | |
else checkInt32(rm, 0, 8); | |
return finalise(x, dp + x.e + 1, rm); | |
}; | |
/* | |
* Return a string representing the value of this Decimal in exponential notation rounded to | |
* `dp` fixed decimal places using rounding mode `rounding`. | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
*/ | |
P.toExponential = function (dp, rm) { | |
var str, | |
x = this, | |
Ctor = x.constructor; | |
if (dp === void 0) { | |
str = finiteToString(x, true); | |
} else { | |
checkInt32(dp, 0, MAX_DIGITS); | |
if (rm === void 0) rm = Ctor.rounding; | |
else checkInt32(rm, 0, 8); | |
x = finalise(new Ctor(x), dp + 1, rm); | |
str = finiteToString(x, true, dp + 1); | |
} | |
return x.isNeg() && !x.isZero() ? '-' + str : str; | |
}; | |
/* | |
* Return a string representing the value of this Decimal in normal (fixed-point) notation to | |
* `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is | |
* omitted. | |
* | |
* As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'. | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'. | |
* (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'. | |
* (-0).toFixed(3) is '0.000'. | |
* (-0.5).toFixed(0) is '-0'. | |
* | |
*/ | |
P.toFixed = function (dp, rm) { | |
var str, y, | |
x = this, | |
Ctor = x.constructor; | |
if (dp === void 0) { | |
str = finiteToString(x); | |
} else { | |
checkInt32(dp, 0, MAX_DIGITS); | |
if (rm === void 0) rm = Ctor.rounding; | |
else checkInt32(rm, 0, 8); | |
y = finalise(new Ctor(x), dp + x.e + 1, rm); | |
str = finiteToString(y, false, dp + y.e + 1); | |
} | |
// To determine whether to add the minus sign look at the value before it was rounded, | |
// i.e. look at `x` rather than `y`. | |
return x.isNeg() && !x.isZero() ? '-' + str : str; | |
}; | |
/* | |
* Return an array representing the value of this Decimal as a simple fraction with an integer | |
* numerator and an integer denominator. | |
* | |
* The denominator will be a positive non-zero value less than or equal to the specified maximum | |
* denominator. If a maximum denominator is not specified, the denominator will be the lowest | |
* value necessary to represent the number exactly. | |
* | |
* [maxD] {number|string|Decimal} Maximum denominator. Integer >= 1 and < Infinity. | |
* | |
*/ | |
P.toFraction = function (maxD) { | |
var d, d0, d1, d2, e, k, n, n0, n1, pr, q, r, | |
x = this, | |
xd = x.d, | |
Ctor = x.constructor; | |
if (!xd) return new Ctor(x); | |
n1 = d0 = new Ctor(1); | |
d1 = n0 = new Ctor(0); | |
d = new Ctor(d1); | |
e = d.e = getPrecision(xd) - x.e - 1; | |
k = e % LOG_BASE; | |
d.d[0] = mathpow(10, k < 0 ? LOG_BASE + k : k); | |
if (maxD == null) { | |
// d is 10**e, the minimum max-denominator needed. | |
maxD = e > 0 ? d : n1; | |
} else { | |
n = new Ctor(maxD); | |
if (!n.isInt() || n.lt(n1)) throw Error(invalidArgument + n); | |
maxD = n.gt(d) ? (e > 0 ? d : n1) : n; | |
} | |
external = false; | |
n = new Ctor(digitsToString(xd)); | |
pr = Ctor.precision; | |
Ctor.precision = e = xd.length * LOG_BASE * 2; | |
for (;;) { | |
q = divide(n, d, 0, 1, 1); | |
d2 = d0.plus(q.times(d1)); | |
if (d2.cmp(maxD) == 1) break; | |
d0 = d1; | |
d1 = d2; | |
d2 = n1; | |
n1 = n0.plus(q.times(d2)); | |
n0 = d2; | |
d2 = d; | |
d = n.minus(q.times(d2)); | |
n = d2; | |
} | |
d2 = divide(maxD.minus(d0), d1, 0, 1, 1); | |
n0 = n0.plus(d2.times(n1)); | |
d0 = d0.plus(d2.times(d1)); | |
n0.s = n1.s = x.s; | |
// Determine which fraction is closer to x, n0/d0 or n1/d1? | |
r = divide(n1, d1, e, 1).minus(x).abs().cmp(divide(n0, d0, e, 1).minus(x).abs()) < 1 | |
? [n1, d1] : [n0, d0]; | |
Ctor.precision = pr; | |
external = true; | |
return r; | |
}; | |
/* | |
* Return a string representing the value of this Decimal in base 16, round to `sd` significant | |
* digits using rounding mode `rm`. | |
* | |
* If the optional `sd` argument is present then return binary exponential notation. | |
* | |
* [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
*/ | |
P.toHexadecimal = P.toHex = function (sd, rm) { | |
return toStringBinary(this, 16, sd, rm); | |
}; | |
/* | |
* Returns a new Decimal whose value is the nearest multiple of `y` in the direction of rounding | |
* mode `rm`, or `Decimal.rounding` if `rm` is omitted, to the value of this Decimal. | |
* | |
* The return value will always have the same sign as this Decimal, unless either this Decimal | |
* or `y` is NaN, in which case the return value will be also be NaN. | |
* | |
* The return value is not affected by the value of `precision`. | |
* | |
* y {number|string|Decimal} The magnitude to round to a multiple of. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'toNearest() rounding mode not an integer: {rm}' | |
* 'toNearest() rounding mode out of range: {rm}' | |
* | |
*/ | |
P.toNearest = function (y, rm) { | |
var x = this, | |
Ctor = x.constructor; | |
x = new Ctor(x); | |
if (y == null) { | |
// If x is not finite, return x. | |
if (!x.d) return x; | |
y = new Ctor(1); | |
rm = Ctor.rounding; | |
} else { | |
y = new Ctor(y); | |
if (rm === void 0) { | |
rm = Ctor.rounding; | |
} else { | |
checkInt32(rm, 0, 8); | |
} | |
// If x is not finite, return x if y is not NaN, else NaN. | |
if (!x.d) return y.s ? x : y; | |
// If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN. | |
if (!y.d) { | |
if (y.s) y.s = x.s; | |
return y; | |
} | |
} | |
// If y is not zero, calculate the nearest multiple of y to x. | |
if (y.d[0]) { | |
external = false; | |
x = divide(x, y, 0, rm, 1).times(y); | |
external = true; | |
finalise(x); | |
// If y is zero, return zero with the sign of x. | |
} else { | |
y.s = x.s; | |
x = y; | |
} | |
return x; | |
}; | |
/* | |
* Return the value of this Decimal converted to a number primitive. | |
* Zero keeps its sign. | |
* | |
*/ | |
P.toNumber = function () { | |
return +this; | |
}; | |
/* | |
* Return a string representing the value of this Decimal in base 8, round to `sd` significant | |
* digits using rounding mode `rm`. | |
* | |
* If the optional `sd` argument is present then return binary exponential notation. | |
* | |
* [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
*/ | |
P.toOctal = function (sd, rm) { | |
return toStringBinary(this, 8, sd, rm); | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal raised to the power `y`, rounded | |
* to `precision` significant digits using rounding mode `rounding`. | |
* | |
* ECMAScript compliant. | |
* | |
* pow(x, NaN) = NaN | |
* pow(x, ±0) = 1 | |
* pow(NaN, non-zero) = NaN | |
* pow(abs(x) > 1, +Infinity) = +Infinity | |
* pow(abs(x) > 1, -Infinity) = +0 | |
* pow(abs(x) == 1, ±Infinity) = NaN | |
* pow(abs(x) < 1, +Infinity) = +0 | |
* pow(abs(x) < 1, -Infinity) = +Infinity | |
* pow(+Infinity, y > 0) = +Infinity | |
* pow(+Infinity, y < 0) = +0 | |
* pow(-Infinity, odd integer > 0) = -Infinity | |
* pow(-Infinity, even integer > 0) = +Infinity | |
* pow(-Infinity, odd integer < 0) = -0 | |
* pow(-Infinity, even integer < 0) = +0 | |
* pow(+0, y > 0) = +0 | |
* pow(+0, y < 0) = +Infinity | |
* pow(-0, odd integer > 0) = -0 | |
* pow(-0, even integer > 0) = +0 | |
* pow(-0, odd integer < 0) = -Infinity | |
* pow(-0, even integer < 0) = +Infinity | |
* pow(finite x < 0, finite non-integer) = NaN | |
* | |
* For non-integer or very large exponents pow(x, y) is calculated using | |
* | |
* x^y = exp(y*ln(x)) | |
* | |
* Assuming the first 15 rounding digits are each equally likely to be any digit 0-9, the | |
* probability of an incorrectly rounded result | |
* P([49]9{14} | [50]0{14}) = 2 * 0.2 * 10^-14 = 4e-15 = 1/2.5e+14 | |
* i.e. 1 in 250,000,000,000,000 | |
* | |
* If a result is incorrectly rounded the maximum error will be 1 ulp (unit in last place). | |
* | |
* y {number|string|Decimal} The power to which to raise this Decimal. | |
* | |
*/ | |
P.toPower = P.pow = function (y) { | |
var e, k, pr, r, rm, s, | |
x = this, | |
Ctor = x.constructor, | |
yn = +(y = new Ctor(y)); | |
// Either ±Infinity, NaN or ±0? | |
if (!x.d || !y.d || !x.d[0] || !y.d[0]) return new Ctor(mathpow(+x, yn)); | |
x = new Ctor(x); | |
if (x.eq(1)) return x; | |
pr = Ctor.precision; | |
rm = Ctor.rounding; | |
if (y.eq(1)) return finalise(x, pr, rm); | |
// y exponent | |
e = mathfloor(y.e / LOG_BASE); | |
// If y is a small integer use the 'exponentiation by squaring' algorithm. | |
if (e >= y.d.length - 1 && (k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) { | |
r = intPow(Ctor, x, k, pr); | |
return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm); | |
} | |
s = x.s; | |
// if x is negative | |
if (s < 0) { | |
// if y is not an integer | |
if (e < y.d.length - 1) return new Ctor(NaN); | |
// Result is positive if x is negative and the last digit of integer y is even. | |
if ((y.d[e] & 1) == 0) s = 1; | |
// if x.eq(-1) | |
if (x.e == 0 && x.d[0] == 1 && x.d.length == 1) { | |
x.s = s; | |
return x; | |
} | |
} | |
// Estimate result exponent. | |
// x^y = 10^e, where e = y * log10(x) | |
// log10(x) = log10(x_significand) + x_exponent | |
// log10(x_significand) = ln(x_significand) / ln(10) | |
k = mathpow(+x, yn); | |
e = k == 0 || !isFinite(k) | |
? mathfloor(yn * (Math.log('0.' + digitsToString(x.d)) / Math.LN10 + x.e + 1)) | |
: new Ctor(k + '').e; | |
// Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1. | |
// Overflow/underflow? | |
if (e > Ctor.maxE + 1 || e < Ctor.minE - 1) return new Ctor(e > 0 ? s / 0 : 0); | |
external = false; | |
Ctor.rounding = x.s = 1; | |
// Estimate the extra guard digits needed to ensure five correct rounding digits from | |
// naturalLogarithm(x). Example of failure without these extra digits (precision: 10): | |
// new Decimal(2.32456).pow('2087987436534566.46411') | |
// should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815 | |
k = Math.min(12, (e + '').length); | |
// r = x^y = exp(y*ln(x)) | |
r = naturalExponential(y.times(naturalLogarithm(x, pr + k)), pr); | |
// r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40) | |
if (r.d) { | |
// Truncate to the required precision plus five rounding digits. | |
r = finalise(r, pr + 5, 1); | |
// If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate | |
// the result. | |
if (checkRoundingDigits(r.d, pr, rm)) { | |
e = pr + 10; | |
// Truncate to the increased precision plus five rounding digits. | |
r = finalise(naturalExponential(y.times(naturalLogarithm(x, e + k)), e), e + 5, 1); | |
// Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9). | |
if (+digitsToString(r.d).slice(pr + 1, pr + 15) + 1 == 1e14) { | |
r = finalise(r, pr + 1, 0); | |
} | |
} | |
} | |
r.s = s; | |
external = true; | |
Ctor.rounding = rm; | |
return finalise(r, pr, rm); | |
}; | |
/* | |
* Return a string representing the value of this Decimal rounded to `sd` significant digits | |
* using rounding mode `rounding`. | |
* | |
* Return exponential notation if `sd` is less than the number of digits necessary to represent | |
* the integer part of the value in normal notation. | |
* | |
* [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
*/ | |
P.toPrecision = function (sd, rm) { | |
var str, | |
x = this, | |
Ctor = x.constructor; | |
if (sd === void 0) { | |
str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos); | |
} else { | |
checkInt32(sd, 1, MAX_DIGITS); | |
if (rm === void 0) rm = Ctor.rounding; | |
else checkInt32(rm, 0, 8); | |
x = finalise(new Ctor(x), sd, rm); | |
str = finiteToString(x, sd <= x.e || x.e <= Ctor.toExpNeg, sd); | |
} | |
return x.isNeg() && !x.isZero() ? '-' + str : str; | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd` | |
* significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if | |
* omitted. | |
* | |
* [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'toSD() digits out of range: {sd}' | |
* 'toSD() digits not an integer: {sd}' | |
* 'toSD() rounding mode not an integer: {rm}' | |
* 'toSD() rounding mode out of range: {rm}' | |
* | |
*/ | |
P.toSignificantDigits = P.toSD = function (sd, rm) { | |
var x = this, | |
Ctor = x.constructor; | |
if (sd === void 0) { | |
sd = Ctor.precision; | |
rm = Ctor.rounding; | |
} else { | |
checkInt32(sd, 1, MAX_DIGITS); | |
if (rm === void 0) rm = Ctor.rounding; | |
else checkInt32(rm, 0, 8); | |
} | |
return finalise(new Ctor(x), sd, rm); | |
}; | |
/* | |
* Return a string representing the value of this Decimal. | |
* | |
* Return exponential notation if this Decimal has a positive exponent equal to or greater than | |
* `toExpPos`, or a negative exponent equal to or less than `toExpNeg`. | |
* | |
*/ | |
P.toString = function () { | |
var x = this, | |
Ctor = x.constructor, | |
str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos); | |
return x.isNeg() && !x.isZero() ? '-' + str : str; | |
}; | |
/* | |
* Return a new Decimal whose value is the value of this Decimal truncated to a whole number. | |
* | |
*/ | |
P.truncated = P.trunc = function () { | |
return finalise(new this.constructor(this), this.e + 1, 1); | |
}; | |
/* | |
* Return a string representing the value of this Decimal. | |
* Unlike `toString`, negative zero will include the minus sign. | |
* | |
*/ | |
P.valueOf = P.toJSON = function () { | |
var x = this, | |
Ctor = x.constructor, | |
str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos); | |
return x.isNeg() ? '-' + str : str; | |
}; | |
// Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers. | |
/* | |
* digitsToString P.cubeRoot, P.logarithm, P.squareRoot, P.toFraction, P.toPower, | |
* finiteToString, naturalExponential, naturalLogarithm | |
* checkInt32 P.toDecimalPlaces, P.toExponential, P.toFixed, P.toNearest, | |
* P.toPrecision, P.toSignificantDigits, toStringBinary, random | |
* checkRoundingDigits P.logarithm, P.toPower, naturalExponential, naturalLogarithm | |
* convertBase toStringBinary, parseOther | |
* cos P.cos | |
* divide P.atanh, P.cubeRoot, P.dividedBy, P.dividedToIntegerBy, | |
* P.logarithm, P.modulo, P.squareRoot, P.tan, P.tanh, P.toFraction, | |
* P.toNearest, toStringBinary, naturalExponential, naturalLogarithm, | |
* taylorSeries, atan2, parseOther | |
* finalise P.absoluteValue, P.atan, P.atanh, P.ceil, P.cos, P.cosh, | |
* P.cubeRoot, P.dividedToIntegerBy, P.floor, P.logarithm, P.minus, | |
* P.modulo, P.negated, P.plus, P.round, P.sin, P.sinh, P.squareRoot, | |
* P.tan, P.times, P.toDecimalPlaces, P.toExponential, P.toFixed, | |
* P.toNearest, P.toPower, P.toPrecision, P.toSignificantDigits, | |
* P.truncated, divide, getLn10, getPi, naturalExponential, | |
* naturalLogarithm, ceil, floor, round, trunc | |
* finiteToString P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf, | |
* toStringBinary | |
* getBase10Exponent P.minus, P.plus, P.times, parseOther | |
* getLn10 P.logarithm, naturalLogarithm | |
* getPi P.acos, P.asin, P.atan, toLessThanHalfPi, atan2 | |
* getPrecision P.precision, P.toFraction | |
* getZeroString digitsToString, finiteToString | |
* intPow P.toPower, parseOther | |
* isOdd toLessThanHalfPi | |
* maxOrMin max, min | |
* naturalExponential P.naturalExponential, P.toPower | |
* naturalLogarithm P.acosh, P.asinh, P.atanh, P.logarithm, P.naturalLogarithm, | |
* P.toPower, naturalExponential | |
* nonFiniteToString finiteToString, toStringBinary | |
* parseDecimal Decimal | |
* parseOther Decimal | |
* sin P.sin | |
* taylorSeries P.cosh, P.sinh, cos, sin | |
* toLessThanHalfPi P.cos, P.sin | |
* toStringBinary P.toBinary, P.toHexadecimal, P.toOctal | |
* truncate intPow | |
* | |
* Throws: P.logarithm, P.precision, P.toFraction, checkInt32, getLn10, getPi, | |
* naturalLogarithm, config, parseOther, random, Decimal | |
*/ | |
function digitsToString(d) { | |
var i, k, ws, | |
indexOfLastWord = d.length - 1, | |
str = '', | |
w = d[0]; | |
if (indexOfLastWord > 0) { | |
str += w; | |
for (i = 1; i < indexOfLastWord; i++) { | |
ws = d[i] + ''; | |
k = LOG_BASE - ws.length; | |
if (k) str += getZeroString(k); | |
str += ws; | |
} | |
w = d[i]; | |
ws = w + ''; | |
k = LOG_BASE - ws.length; | |
if (k) str += getZeroString(k); | |
} else if (w === 0) { | |
return '0'; | |
} | |
// Remove trailing zeros of last w. | |
for (; w % 10 === 0;) w /= 10; | |
return str + w; | |
} | |
function checkInt32(i, min, max) { | |
if (i !== ~~i || i < min || i > max) { | |
throw Error(invalidArgument + i); | |
} | |
} | |
/* | |
* Check 5 rounding digits if `repeating` is null, 4 otherwise. | |
* `repeating == null` if caller is `log` or `pow`, | |
* `repeating != null` if caller is `naturalLogarithm` or `naturalExponential`. | |
*/ | |
function checkRoundingDigits(d, i, rm, repeating) { | |
var di, k, r, rd; | |
// Get the length of the first word of the array d. | |
for (k = d[0]; k >= 10; k /= 10) --i; | |
// Is the rounding digit in the first word of d? | |
if (--i < 0) { | |
i += LOG_BASE; | |
di = 0; | |
} else { | |
di = Math.ceil((i + 1) / LOG_BASE); | |
i %= LOG_BASE; | |
} | |
// i is the index (0 - 6) of the rounding digit. | |
// E.g. if within the word 3487563 the first rounding digit is 5, | |
// then i = 4, k = 1000, rd = 3487563 % 1000 = 563 | |
k = mathpow(10, LOG_BASE - i); | |
rd = d[di] % k | 0; | |
if (repeating == null) { | |
if (i < 3) { | |
if (i == 0) rd = rd / 100 | 0; | |
else if (i == 1) rd = rd / 10 | 0; | |
r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 50000 || rd == 0; | |
} else { | |
r = (rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2) && | |
(d[di + 1] / k / 100 | 0) == mathpow(10, i - 2) - 1 || | |
(rd == k / 2 || rd == 0) && (d[di + 1] / k / 100 | 0) == 0; | |
} | |
} else { | |
if (i < 4) { | |
if (i == 0) rd = rd / 1000 | 0; | |
else if (i == 1) rd = rd / 100 | 0; | |
else if (i == 2) rd = rd / 10 | 0; | |
r = (repeating || rm < 4) && rd == 9999 || !repeating && rm > 3 && rd == 4999; | |
} else { | |
r = ((repeating || rm < 4) && rd + 1 == k || | |
(!repeating && rm > 3) && rd + 1 == k / 2) && | |
(d[di + 1] / k / 1000 | 0) == mathpow(10, i - 3) - 1; | |
} | |
} | |
return r; | |
} | |
// Convert string of `baseIn` to an array of numbers of `baseOut`. | |
// Eg. convertBase('255', 10, 16) returns [15, 15]. | |
// Eg. convertBase('ff', 16, 10) returns [2, 5, 5]. | |
function convertBase(str, baseIn, baseOut) { | |
var j, | |
arr = [0], | |
arrL, | |
i = 0, | |
strL = str.length; | |
for (; i < strL;) { | |
for (arrL = arr.length; arrL--;) arr[arrL] *= baseIn; | |
arr[0] += NUMERALS.indexOf(str.charAt(i++)); | |
for (j = 0; j < arr.length; j++) { | |
if (arr[j] > baseOut - 1) { | |
if (arr[j + 1] === void 0) arr[j + 1] = 0; | |
arr[j + 1] += arr[j] / baseOut | 0; | |
arr[j] %= baseOut; | |
} | |
} | |
} | |
return arr.reverse(); | |
} | |
/* | |
* cos(x) = 1 - x^2/2! + x^4/4! - ... | |
* |x| < pi/2 | |
* | |
*/ | |
function cosine(Ctor, x) { | |
var k, len, y; | |
if (x.isZero()) return x; | |
// Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1 | |
// i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1 | |
// Estimate the optimum number of times to use the argument reduction. | |
len = x.d.length; | |
if (len < 32) { | |
k = Math.ceil(len / 3); | |
y = (1 / tinyPow(4, k)).toString(); | |
} else { | |
k = 16; | |
y = '2.3283064365386962890625e-10'; | |
} | |
Ctor.precision += k; | |
x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1)); | |
// Reverse argument reduction | |
for (var i = k; i--;) { | |
var cos2x = x.times(x); | |
x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1); | |
} | |
Ctor.precision -= k; | |
return x; | |
} | |
/* | |
* Perform division in the specified base. | |
*/ | |
var divide = (function () { | |
// Assumes non-zero x and k, and hence non-zero result. | |
function multiplyInteger(x, k, base) { | |
var temp, | |
carry = 0, | |
i = x.length; | |
for (x = x.slice(); i--;) { | |
temp = x[i] * k + carry; | |
x[i] = temp % base | 0; | |
carry = temp / base | 0; | |
} | |
if (carry) x.unshift(carry); | |
return x; | |
} | |
function compare(a, b, aL, bL) { | |
var i, r; | |
if (aL != bL) { | |
r = aL > bL ? 1 : -1; | |
} else { | |
for (i = r = 0; i < aL; i++) { | |
if (a[i] != b[i]) { | |
r = a[i] > b[i] ? 1 : -1; | |
break; | |
} | |
} | |
} | |
return r; | |
} | |
function subtract(a, b, aL, base) { | |
var i = 0; | |
// Subtract b from a. | |
for (; aL--;) { | |
a[aL] -= i; | |
i = a[aL] < b[aL] ? 1 : 0; | |
a[aL] = i * base + a[aL] - b[aL]; | |
} | |
// Remove leading zeros. | |
for (; !a[0] && a.length > 1;) a.shift(); | |
} | |
return function (x, y, pr, rm, dp, base) { | |
var cmp, e, i, k, logBase, more, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0, | |
yL, yz, | |
Ctor = x.constructor, | |
sign = x.s == y.s ? 1 : -1, | |
xd = x.d, | |
yd = y.d; | |
// Either NaN, Infinity or 0? | |
if (!xd || !xd[0] || !yd || !yd[0]) { | |
return new Ctor(// Return NaN if either NaN, or both Infinity or 0. | |
!x.s || !y.s || (xd ? yd && xd[0] == yd[0] : !yd) ? NaN : | |
// Return ±0 if x is 0 or y is ±Infinity, or return ±Infinity as y is 0. | |
xd && xd[0] == 0 || !yd ? sign * 0 : sign / 0); | |
} | |
if (base) { | |
logBase = 1; | |
e = x.e - y.e; | |
} else { | |
base = BASE; | |
logBase = LOG_BASE; | |
e = mathfloor(x.e / logBase) - mathfloor(y.e / logBase); | |
} | |
yL = yd.length; | |
xL = xd.length; | |
q = new Ctor(sign); | |
qd = q.d = []; | |
// Result exponent may be one less than e. | |
// The digit array of a Decimal from toStringBinary may have trailing zeros. | |
for (i = 0; yd[i] == (xd[i] || 0); i++); | |
if (yd[i] > (xd[i] || 0)) e--; | |
if (pr == null) { | |
sd = pr = Ctor.precision; | |
rm = Ctor.rounding; | |
} else if (dp) { | |
sd = pr + (x.e - y.e) + 1; | |
} else { | |
sd = pr; | |
} | |
if (sd < 0) { | |
qd.push(1); | |
more = true; | |
} else { | |
// Convert precision in number of base 10 digits to base 1e7 digits. | |
sd = sd / logBase + 2 | 0; | |
i = 0; | |
// divisor < 1e7 | |
if (yL == 1) { | |
k = 0; | |
yd = yd[0]; | |
sd++; | |
// k is the carry. | |
for (; (i < xL || k) && sd--; i++) { | |
t = k * base + (xd[i] || 0); | |
qd[i] = t / yd | 0; | |
k = t % yd | 0; | |
} | |
more = k || i < xL; | |
// divisor >= 1e7 | |
} else { | |
// Normalise xd and yd so highest order digit of yd is >= base/2 | |
k = base / (yd[0] + 1) | 0; | |
if (k > 1) { | |
yd = multiplyInteger(yd, k, base); | |
xd = multiplyInteger(xd, k, base); | |
yL = yd.length; | |
xL = xd.length; | |
} | |
xi = yL; | |
rem = xd.slice(0, yL); | |
remL = rem.length; | |
// Add zeros to make remainder as long as divisor. | |
for (; remL < yL;) rem[remL++] = 0; | |
yz = yd.slice(); | |
yz.unshift(0); | |
yd0 = yd[0]; | |
if (yd[1] >= base / 2) ++yd0; | |
do { | |
k = 0; | |
// Compare divisor and remainder. | |
cmp = compare(yd, rem, yL, remL); | |
// If divisor < remainder. | |
if (cmp < 0) { | |
// Calculate trial digit, k. | |
rem0 = rem[0]; | |
if (yL != remL) rem0 = rem0 * base + (rem[1] || 0); | |
// k will be how many times the divisor goes into the current remainder. | |
k = rem0 / yd0 | 0; | |
// Algorithm: | |
// 1. product = divisor * trial digit (k) | |
// 2. if product > remainder: product -= divisor, k-- | |
// 3. remainder -= product | |
// 4. if product was < remainder at 2: | |
// 5. compare new remainder and divisor | |
// 6. If remainder > divisor: remainder -= divisor, k++ | |
if (k > 1) { | |
if (k >= base) k = base - 1; | |
// product = divisor * trial digit. | |
prod = multiplyInteger(yd, k, base); | |
prodL = prod.length; | |
remL = rem.length; | |
// Compare product and remainder. | |
cmp = compare(prod, rem, prodL, remL); | |
// product > remainder. | |
if (cmp == 1) { | |
k--; | |
// Subtract divisor from product. | |
subtract(prod, yL < prodL ? yz : yd, prodL, base); | |
} | |
} else { | |
// cmp is -1. | |
// If k is 0, there is no need to compare yd and rem again below, so change cmp to 1 | |
// to avoid it. If k is 1 there is a need to compare yd and rem again below. | |
if (k == 0) cmp = k = 1; | |
prod = yd.slice(); | |
} | |
prodL = prod.length; | |
if (prodL < remL) prod.unshift(0); | |
// Subtract product from remainder. | |
subtract(rem, prod, remL, base); | |
// If product was < previous remainder. | |
if (cmp == -1) { | |
remL = rem.length; | |
// Compare divisor and new remainder. | |
cmp = compare(yd, rem, yL, remL); | |
// If divisor < new remainder, subtract divisor from remainder. | |
if (cmp < 1) { | |
k++; | |
// Subtract divisor from remainder. | |
subtract(rem, yL < remL ? yz : yd, remL, base); | |
} | |
} | |
remL = rem.length; | |
} else if (cmp === 0) { | |
k++; | |
rem = [0]; | |
} // if cmp === 1, k will be 0 | |
// Add the next digit, k, to the result array. | |
qd[i++] = k; | |
// Update the remainder. | |
if (cmp && rem[0]) { | |
rem[remL++] = xd[xi] || 0; | |
} else { | |
rem = [xd[xi]]; | |
remL = 1; | |
} | |
} while ((xi++ < xL || rem[0] !== void 0) && sd--); | |
more = rem[0] !== void 0; | |
} | |
// Leading zero? | |
if (!qd[0]) qd.shift(); | |
} | |
// logBase is 1 when divide is being used for base conversion. | |
if (logBase == 1) { | |
q.e = e; | |
inexact = more; | |
} else { | |
// To calculate q.e, first get the number of digits of qd[0]. | |
for (i = 1, k = qd[0]; k >= 10; k /= 10) i++; | |
q.e = i + e * logBase - 1; | |
finalise(q, dp ? pr + q.e + 1 : pr, rm, more); | |
} | |
return q; | |
}; | |
})(); | |
/* | |
* Round `x` to `sd` significant digits using rounding mode `rm`. | |
* Check for over/under-flow. | |
*/ | |
function finalise(x, sd, rm, isTruncated) { | |
var digits, i, j, k, rd, roundUp, w, xd, xdi, | |
Ctor = x.constructor; | |
// Don't round if sd is null or undefined. | |
out: if (sd != null) { | |
xd = x.d; | |
// Infinity/NaN. | |
if (!xd) return x; | |
// rd: the rounding digit, i.e. the digit after the digit that may be rounded up. | |
// w: the word of xd containing rd, a base 1e7 number. | |
// xdi: the index of w within xd. | |
// digits: the number of digits of w. | |
// i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if | |
// they had leading zeros) | |
// j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero). | |
// Get the length of the first word of the digits array xd. | |
for (digits = 1, k = xd[0]; k >= 10; k /= 10) digits++; | |
i = sd - digits; | |
// Is the rounding digit in the first word of xd? | |
if (i < 0) { | |
i += LOG_BASE; | |
j = sd; | |
w = xd[xdi = 0]; | |
// Get the rounding digit at index j of w. | |
rd = w / mathpow(10, digits - j - 1) % 10 | 0; | |
} else { | |
xdi = Math.ceil((i + 1) / LOG_BASE); | |
k = xd.length; | |
if (xdi >= k) { | |
if (isTruncated) { | |
// Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`. | |
for (; k++ <= xdi;) xd.push(0); | |
w = rd = 0; | |
digits = 1; | |
i %= LOG_BASE; | |
j = i - LOG_BASE + 1; | |
} else { | |
break out; | |
} | |
} else { | |
w = k = xd[xdi]; | |
// Get the number of digits of w. | |
for (digits = 1; k >= 10; k /= 10) digits++; | |
// Get the index of rd within w. | |
i %= LOG_BASE; | |
// Get the index of rd within w, adjusted for leading zeros. | |
// The number of leading zeros of w is given by LOG_BASE - digits. | |
j = i - LOG_BASE + digits; | |
// Get the rounding digit at index j of w. | |
rd = j < 0 ? 0 : w / mathpow(10, digits - j - 1) % 10 | 0; | |
} | |
} | |
// Are there any non-zero digits after the rounding digit? | |
isTruncated = isTruncated || sd < 0 || | |
xd[xdi + 1] !== void 0 || (j < 0 ? w : w % mathpow(10, digits - j - 1)); | |
// The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right | |
// of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression | |
// will give 714. | |
roundUp = rm < 4 | |
? (rd || isTruncated) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) | |
: rd > 5 || rd == 5 && (rm == 4 || isTruncated || rm == 6 && | |
// Check whether the digit to the left of the rounding digit is odd. | |
((i > 0 ? j > 0 ? w / mathpow(10, digits - j) : 0 : xd[xdi - 1]) % 10) & 1 || | |
rm == (x.s < 0 ? 8 : 7)); | |
if (sd < 1 || !xd[0]) { | |
xd.length = 0; | |
if (roundUp) { | |
// Convert sd to decimal places. | |
sd -= x.e + 1; | |
// 1, 0.1, 0.01, 0.001, 0.0001 etc. | |
xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE); | |
x.e = -sd || 0; | |
} else { | |
// Zero. | |
xd[0] = x.e = 0; | |
} | |
return x; | |
} | |
// Remove excess digits. | |
if (i == 0) { | |
xd.length = xdi; | |
k = 1; | |
xdi--; | |
} else { | |
xd.length = xdi + 1; | |
k = mathpow(10, LOG_BASE - i); | |
// E.g. 56700 becomes 56000 if 7 is the rounding digit. | |
// j > 0 means i > number of leading zeros of w. | |
xd[xdi] = j > 0 ? (w / mathpow(10, digits - j) % mathpow(10, j) | 0) * k : 0; | |
} | |
if (roundUp) { | |
for (;;) { | |
// Is the digit to be rounded up in the first word of xd? | |
if (xdi == 0) { | |
// i will be the length of xd[0] before k is added. | |
for (i = 1, j = xd[0]; j >= 10; j /= 10) i++; | |
j = xd[0] += k; | |
for (k = 1; j >= 10; j /= 10) k++; | |
// if i != k the length has increased. | |
if (i != k) { | |
x.e++; | |
if (xd[0] == BASE) xd[0] = 1; | |
} | |
break; | |
} else { | |
xd[xdi] += k; | |
if (xd[xdi] != BASE) break; | |
xd[xdi--] = 0; | |
k = 1; | |
} | |
} | |
} | |
// Remove trailing zeros. | |
for (i = xd.length; xd[--i] === 0;) xd.pop(); | |
} | |
if (external) { | |
// Overflow? | |
if (x.e > Ctor.maxE) { | |
// Infinity. | |
x.d = null; | |
x.e = NaN; | |
// Underflow? | |
} else if (x.e < Ctor.minE) { | |
// Zero. | |
x.e = 0; | |
x.d = [0]; | |
// Ctor.underflow = true; | |
} // else Ctor.underflow = false; | |
} | |
return x; | |
} | |
function finiteToString(x, isExp, sd) { | |
if (!x.isFinite()) return nonFiniteToString(x); | |
var k, | |
e = x.e, | |
str = digitsToString(x.d), | |
len = str.length; | |
if (isExp) { | |
if (sd && (k = sd - len) > 0) { | |
str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k); | |
} else if (len > 1) { | |
str = str.charAt(0) + '.' + str.slice(1); | |
} | |
str = str + (x.e < 0 ? 'e' : 'e+') + x.e; | |
} else if (e < 0) { | |
str = '0.' + getZeroString(-e - 1) + str; | |
if (sd && (k = sd - len) > 0) str += getZeroString(k); | |
} else if (e >= len) { | |
str += getZeroString(e + 1 - len); | |
if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k); | |
} else { | |
if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k); | |
if (sd && (k = sd - len) > 0) { | |
if (e + 1 === len) str += '.'; | |
str += getZeroString(k); | |
} | |
} | |
return str; | |
} | |
// Calculate the base 10 exponent from the base 1e7 exponent. | |
function getBase10Exponent(digits, e) { | |
var w = digits[0]; | |
// Add the number of digits of the first word of the digits array. | |
for ( e *= LOG_BASE; w >= 10; w /= 10) e++; | |
return e; | |
} | |
function getLn10(Ctor, sd, pr) { | |
if (sd > LN10_PRECISION) { | |
// Reset global state in case the exception is caught. | |
external = true; | |
if (pr) Ctor.precision = pr; | |
throw Error(precisionLimitExceeded); | |
} | |
return finalise(new Ctor(LN10), sd, 1, true); | |
} | |
function getPi(Ctor, sd, rm) { | |
if (sd > PI_PRECISION) throw Error(precisionLimitExceeded); | |
return finalise(new Ctor(PI), sd, rm, true); | |
} | |
function getPrecision(digits) { | |
var w = digits.length - 1, | |
len = w * LOG_BASE + 1; | |
w = digits[w]; | |
// If non-zero... | |
if (w) { | |
// Subtract the number of trailing zeros of the last word. | |
for (; w % 10 == 0; w /= 10) len--; | |
// Add the number of digits of the first word. | |
for (w = digits[0]; w >= 10; w /= 10) len++; | |
} | |
return len; | |
} | |
function getZeroString(k) { | |
var zs = ''; | |
for (; k--;) zs += '0'; | |
return zs; | |
} | |
/* | |
* Return a new Decimal whose value is the value of Decimal `x` to the power `n`, where `n` is an | |
* integer of type number. | |
* | |
* Implements 'exponentiation by squaring'. Called by `pow` and `parseOther`. | |
* | |
*/ | |
function intPow(Ctor, x, n, pr) { | |
var isTruncated, | |
r = new Ctor(1), | |
// Max n of 9007199254740991 takes 53 loop iterations. | |
// Maximum digits array length; leaves [28, 34] guard digits. | |
k = Math.ceil(pr / LOG_BASE + 4); | |
external = false; | |
for (;;) { | |
if (n % 2) { | |
r = r.times(x); | |
if (truncate(r.d, k)) isTruncated = true; | |
} | |
n = mathfloor(n / 2); | |
if (n === 0) { | |
// To ensure correct rounding when r.d is truncated, increment the last word if it is zero. | |
n = r.d.length - 1; | |
if (isTruncated && r.d[n] === 0) ++r.d[n]; | |
break; | |
} | |
x = x.times(x); | |
truncate(x.d, k); | |
} | |
external = true; | |
return r; | |
} | |
function isOdd(n) { | |
return n.d[n.d.length - 1] & 1; | |
} | |
/* | |
* Handle `max` and `min`. `ltgt` is 'lt' or 'gt'. | |
*/ | |
function maxOrMin(Ctor, args, ltgt) { | |
var y, | |
x = new Ctor(args[0]), | |
i = 0; | |
for (; ++i < args.length;) { | |
y = new Ctor(args[i]); | |
if (!y.s) { | |
x = y; | |
break; | |
} else if (x[ltgt](y)) { | |
x = y; | |
} | |
} | |
return x; | |
} | |
/* | |
* Return a new Decimal whose value is the natural exponential of `x` rounded to `sd` significant | |
* digits. | |
* | |
* Taylor/Maclaurin series. | |
* | |
* exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ... | |
* | |
* Argument reduction: | |
* Repeat x = x / 32, k += 5, until |x| < 0.1 | |
* exp(x) = exp(x / 2^k)^(2^k) | |
* | |
* Previously, the argument was initially reduced by | |
* exp(x) = exp(r) * 10^k where r = x - k * ln10, k = floor(x / ln10) | |
* to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was | |
* found to be slower than just dividing repeatedly by 32 as above. | |
* | |
* Max integer argument: exp('20723265836946413') = 6.3e+9000000000000000 | |
* Min integer argument: exp('-20723265836946411') = 1.2e-9000000000000000 | |
* (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324) | |
* | |
* exp(Infinity) = Infinity | |
* exp(-Infinity) = 0 | |
* exp(NaN) = NaN | |
* exp(±0) = 1 | |
* | |
* exp(x) is non-terminating for any finite, non-zero x. | |
* | |
* The result will always be correctly rounded. | |
* | |
*/ | |
function naturalExponential(x, sd) { | |
var denominator, guard, j, pow, sum, t, wpr, | |
rep = 0, | |
i = 0, | |
k = 0, | |
Ctor = x.constructor, | |
rm = Ctor.rounding, | |
pr = Ctor.precision; | |
// 0/NaN/Infinity? | |
if (!x.d || !x.d[0] || x.e > 17) { | |
return new Ctor(x.d | |
? !x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0 | |
: x.s ? x.s < 0 ? 0 : x : 0 / 0); | |
} | |
if (sd == null) { | |
external = false; | |
wpr = pr; | |
} else { | |
wpr = sd; | |
} | |
t = new Ctor(0.03125); | |
// while abs(x) >= 0.1 | |
while (x.e > -2) { | |
// x = x / 2^5 | |
x = x.times(t); | |
k += 5; | |
} | |
// Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision | |
// necessary to ensure the first 4 rounding digits are correct. | |
guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0; | |
wpr += guard; | |
denominator = pow = sum = new Ctor(1); | |
Ctor.precision = wpr; | |
for (;;) { | |
pow = finalise(pow.times(x), wpr, 1); | |
denominator = denominator.times(++i); | |
t = sum.plus(divide(pow, denominator, wpr, 1)); | |
if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) { | |
j = k; | |
while (j--) sum = finalise(sum.times(sum), wpr, 1); | |
// Check to see if the first 4 rounding digits are [49]999. | |
// If so, repeat the summation with a higher precision, otherwise | |
// e.g. with precision: 18, rounding: 1 | |
// exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123) | |
// `wpr - guard` is the index of first rounding digit. | |
if (sd == null) { | |
if (rep < 3 && checkRoundingDigits(sum.d, wpr - guard, rm, rep)) { | |
Ctor.precision = wpr += 10; | |
denominator = pow = t = new Ctor(1); | |
i = 0; | |
rep++; | |
} else { | |
return finalise(sum, Ctor.precision = pr, rm, external = true); | |
} | |
} else { | |
Ctor.precision = pr; | |
return sum; | |
} | |
} | |
sum = t; | |
} | |
} | |
/* | |
* Return a new Decimal whose value is the natural logarithm of `x` rounded to `sd` significant | |
* digits. | |
* | |
* ln(-n) = NaN | |
* ln(0) = -Infinity | |
* ln(-0) = -Infinity | |
* ln(1) = 0 | |
* ln(Infinity) = Infinity | |
* ln(-Infinity) = NaN | |
* ln(NaN) = NaN | |
* | |
* ln(n) (n != 1) is non-terminating. | |
* | |
*/ | |
function naturalLogarithm(y, sd) { | |
var c, c0, denominator, e, numerator, rep, sum, t, wpr, x1, x2, | |
n = 1, | |
guard = 10, | |
x = y, | |
xd = x.d, | |
Ctor = x.constructor, | |
rm = Ctor.rounding, | |
pr = Ctor.precision; | |
// Is x negative or Infinity, NaN, 0 or 1? | |
if (x.s < 0 || !xd || !xd[0] || !x.e && xd[0] == 1 && xd.length == 1) { | |
return new Ctor(xd && !xd[0] ? -1 / 0 : x.s != 1 ? NaN : xd ? 0 : x); | |
} | |
if (sd == null) { | |
external = false; | |
wpr = pr; | |
} else { | |
wpr = sd; | |
} | |
Ctor.precision = wpr += guard; | |
c = digitsToString(xd); | |
c0 = c.charAt(0); | |
if (Math.abs(e = x.e) < 1.5e15) { | |
// Argument reduction. | |
// The series converges faster the closer the argument is to 1, so using | |
// ln(a^b) = b * ln(a), ln(a) = ln(a^b) / b | |
// multiply the argument by itself until the leading digits of the significand are 7, 8, 9, | |
// 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can | |
// later be divided by this number, then separate out the power of 10 using | |
// ln(a*10^b) = ln(a) + b*ln(10). | |
// max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14). | |
//while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) { | |
// max n is 6 (gives 0.7 - 1.3) | |
while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) { | |
x = x.times(y); | |
c = digitsToString(x.d); | |
c0 = c.charAt(0); | |
n++; | |
} | |
e = x.e; | |
if (c0 > 1) { | |
x = new Ctor('0.' + c); | |
e++; | |
} else { | |
x = new Ctor(c0 + '.' + c.slice(1)); | |
} | |
} else { | |
// The argument reduction method above may result in overflow if the argument y is a massive | |
// number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this | |
// function using ln(x*10^e) = ln(x) + e*ln(10). | |
t = getLn10(Ctor, wpr + 2, pr).times(e + ''); | |
x = naturalLogarithm(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t); | |
Ctor.precision = pr; | |
return sd == null ? finalise(x, pr, rm, external = true) : x; | |
} | |
// x1 is x reduced to a value near 1. | |
x1 = x; | |
// Taylor series. | |
// ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...) | |
// where x = (y - 1)/(y + 1) (|x| < 1) | |
sum = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1); | |
x2 = finalise(x.times(x), wpr, 1); | |
denominator = 3; | |
for (;;) { | |
numerator = finalise(numerator.times(x2), wpr, 1); | |
t = sum.plus(divide(numerator, new Ctor(denominator), wpr, 1)); | |
if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) { | |
sum = sum.times(2); | |
// Reverse the argument reduction. Check that e is not 0 because, besides preventing an | |
// unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0. | |
if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + '')); | |
sum = divide(sum, new Ctor(n), wpr, 1); | |
// Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has | |
// been repeated previously) and the first 4 rounding digits 9999? | |
// If so, restart the summation with a higher precision, otherwise | |
// e.g. with precision: 12, rounding: 1 | |
// ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463. | |
// `wpr - guard` is the index of first rounding digit. | |
if (sd == null) { | |
if (checkRoundingDigits(sum.d, wpr - guard, rm, rep)) { | |
Ctor.precision = wpr += guard; | |
t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1); | |
x2 = finalise(x.times(x), wpr, 1); | |
denominator = rep = 1; | |
} else { | |
return finalise(sum, Ctor.precision = pr, rm, external = true); | |
} | |
} else { | |
Ctor.precision = pr; | |
return sum; | |
} | |
} | |
sum = t; | |
denominator += 2; | |
} | |
} | |
// ±Infinity, NaN. | |
function nonFiniteToString(x) { | |
// Unsigned. | |
return String(x.s * x.s / 0); | |
} | |
/* | |
* Parse the value of a new Decimal `x` from string `str`. | |
*/ | |
function parseDecimal(x, str) { | |
var e, i, len; | |
// Decimal point? | |
if ((e = str.indexOf('.')) > -1) str = str.replace('.', ''); | |
// Exponential form? | |
if ((i = str.search(/e/i)) > 0) { | |
// Determine exponent. | |
if (e < 0) e = i; | |
e += +str.slice(i + 1); | |
str = str.substring(0, i); | |
} else if (e < 0) { | |
// Integer. | |
e = str.length; | |
} | |
// Determine leading zeros. | |
for (i = 0; str.charCodeAt(i) === 48; i++); | |
// Determine trailing zeros. | |
for (len = str.length; str.charCodeAt(len - 1) === 48; --len); | |
str = str.slice(i, len); | |
if (str) { | |
len -= i; | |
x.e = e = e - i - 1; | |
x.d = []; | |
// Transform base | |
// e is the base 10 exponent. | |
// i is where to slice str to get the first word of the digits array. | |
i = (e + 1) % LOG_BASE; | |
if (e < 0) i += LOG_BASE; | |
if (i < len) { | |
if (i) x.d.push(+str.slice(0, i)); | |
for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE)); | |
str = str.slice(i); | |
i = LOG_BASE - str.length; | |
} else { | |
i -= len; | |
} | |
for (; i--;) str += '0'; | |
x.d.push(+str); | |
if (external) { | |
// Overflow? | |
if (x.e > x.constructor.maxE) { | |
// Infinity. | |
x.d = null; | |
x.e = NaN; | |
// Underflow? | |
} else if (x.e < x.constructor.minE) { | |
// Zero. | |
x.e = 0; | |
x.d = [0]; | |
// x.constructor.underflow = true; | |
} // else x.constructor.underflow = false; | |
} | |
} else { | |
// Zero. | |
x.e = 0; | |
x.d = [0]; | |
} | |
return x; | |
} | |
/* | |
* Parse the value of a new Decimal `x` from a string `str`, which is not a decimal value. | |
*/ | |
function parseOther(x, str) { | |
var base, Ctor, divisor, i, isFloat, len, p, xd, xe; | |
if (str.indexOf('_') > -1) { | |
str = str.replace(/(\d)_(?=\d)/g, '$1'); | |
if (isDecimal.test(str)) return parseDecimal(x, str); | |
} else if (str === 'Infinity' || str === 'NaN') { | |
if (!+str) x.s = NaN; | |
x.e = NaN; | |
x.d = null; | |
return x; | |
} | |
if (isHex.test(str)) { | |
base = 16; | |
str = str.toLowerCase(); | |
} else if (isBinary.test(str)) { | |
base = 2; | |
} else if (isOctal.test(str)) { | |
base = 8; | |
} else { | |
throw Error(invalidArgument + str); | |
} | |
// Is there a binary exponent part? | |
i = str.search(/p/i); | |
if (i > 0) { | |
p = +str.slice(i + 1); | |
str = str.substring(2, i); | |
} else { | |
str = str.slice(2); | |
} | |
// Convert `str` as an integer then divide the result by `base` raised to a power such that the | |
// fraction part will be restored. | |
i = str.indexOf('.'); | |
isFloat = i >= 0; | |
Ctor = x.constructor; | |
if (isFloat) { | |
str = str.replace('.', ''); | |
len = str.length; | |
i = len - i; | |
// log[10](16) = 1.2041... , log[10](88) = 1.9444.... | |
divisor = intPow(Ctor, new Ctor(base), i, i * 2); | |
} | |
xd = convertBase(str, base, BASE); | |
xe = xd.length - 1; | |
// Remove trailing zeros. | |
for (i = xe; xd[i] === 0; --i) xd.pop(); | |
if (i < 0) return new Ctor(x.s * 0); | |
x.e = getBase10Exponent(xd, xe); | |
x.d = xd; | |
external = false; | |
// At what precision to perform the division to ensure exact conversion? | |
// maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount) | |
// log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412 | |
// E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits. | |
// maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount | |
// Therefore using 4 * the number of digits of str will always be enough. | |
if (isFloat) x = divide(x, divisor, len * 4); | |
// Multiply by the binary exponent part if present. | |
if (p) x = x.times(Math.abs(p) < 54 ? mathpow(2, p) : Decimal.pow(2, p)); | |
external = true; | |
return x; | |
} | |
/* | |
* sin(x) = x - x^3/3! + x^5/5! - ... | |
* |x| < pi/2 | |
* | |
*/ | |
function sine(Ctor, x) { | |
var k, | |
len = x.d.length; | |
if (len < 3) { | |
return x.isZero() ? x : taylorSeries(Ctor, 2, x, x); | |
} | |
// Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x) | |
// i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5) | |
// and sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20)) | |
// Estimate the optimum number of times to use the argument reduction. | |
k = 1.4 * Math.sqrt(len); | |
k = k > 16 ? 16 : k | 0; | |
x = x.times(1 / tinyPow(5, k)); | |
x = taylorSeries(Ctor, 2, x, x); | |
// Reverse argument reduction | |
var sin2_x, | |
d5 = new Ctor(5), | |
d16 = new Ctor(16), | |
d20 = new Ctor(20); | |
for (; k--;) { | |
sin2_x = x.times(x); | |
x = x.times(d5.plus(sin2_x.times(d16.times(sin2_x).minus(d20)))); | |
} | |
return x; | |
} | |
// Calculate Taylor series for `cos`, `cosh`, `sin` and `sinh`. | |
function taylorSeries(Ctor, n, x, y, isHyperbolic) { | |
var j, t, u, x2, | |
i = 1, | |
pr = Ctor.precision, | |
k = Math.ceil(pr / LOG_BASE); | |
external = false; | |
x2 = x.times(x); | |
u = new Ctor(y); | |
for (;;) { | |
t = divide(u.times(x2), new Ctor(n++ * n++), pr, 1); | |
u = isHyperbolic ? y.plus(t) : y.minus(t); | |
y = divide(t.times(x2), new Ctor(n++ * n++), pr, 1); | |
t = u.plus(y); | |
if (t.d[k] !== void 0) { | |
for (j = k; t.d[j] === u.d[j] && j--;); | |
if (j == -1) break; | |
} | |
j = u; | |
u = y; | |
y = t; | |
t = j; | |
i++; | |
} | |
external = true; | |
t.d.length = k + 1; | |
return t; | |
} | |
// Exponent e must be positive and non-zero. | |
function tinyPow(b, e) { | |
var n = b; | |
while (--e) n *= b; | |
return n; | |
} | |
// Return the absolute value of `x` reduced to less than or equal to half pi. | |
function toLessThanHalfPi(Ctor, x) { | |
var t, | |
isNeg = x.s < 0, | |
pi = getPi(Ctor, Ctor.precision, 1), | |
halfPi = pi.times(0.5); | |
x = x.abs(); | |
if (x.lte(halfPi)) { | |
quadrant = isNeg ? 4 : 1; | |
return x; | |
} | |
t = x.divToInt(pi); | |
if (t.isZero()) { | |
quadrant = isNeg ? 3 : 2; | |
} else { | |
x = x.minus(t.times(pi)); | |
// 0 <= x < pi | |
if (x.lte(halfPi)) { | |
quadrant = isOdd(t) ? (isNeg ? 2 : 3) : (isNeg ? 4 : 1); | |
return x; | |
} | |
quadrant = isOdd(t) ? (isNeg ? 1 : 4) : (isNeg ? 3 : 2); | |
} | |
return x.minus(pi).abs(); | |
} | |
/* | |
* Return the value of Decimal `x` as a string in base `baseOut`. | |
* | |
* If the optional `sd` argument is present include a binary exponent suffix. | |
*/ | |
function toStringBinary(x, baseOut, sd, rm) { | |
var base, e, i, k, len, roundUp, str, xd, y, | |
Ctor = x.constructor, | |
isExp = sd !== void 0; | |
if (isExp) { | |
checkInt32(sd, 1, MAX_DIGITS); | |
if (rm === void 0) rm = Ctor.rounding; | |
else checkInt32(rm, 0, 8); | |
} else { | |
sd = Ctor.precision; | |
rm = Ctor.rounding; | |
} | |
if (!x.isFinite()) { | |
str = nonFiniteToString(x); | |
} else { | |
str = finiteToString(x); | |
i = str.indexOf('.'); | |
// Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required: | |
// maxBinaryExponent = floor((decimalExponent + 1) * log[2](10)) | |
// minBinaryExponent = floor(decimalExponent * log[2](10)) | |
// log[2](10) = 3.321928094887362347870319429489390175864 | |
if (isExp) { | |
base = 2; | |
if (baseOut == 16) { | |
sd = sd * 4 - 3; | |
} else if (baseOut == 8) { | |
sd = sd * 3 - 2; | |
} | |
} else { | |
base = baseOut; | |
} | |
// Convert the number as an integer then divide the result by its base raised to a power such | |
// that the fraction part will be restored. | |
// Non-integer. | |
if (i >= 0) { | |
str = str.replace('.', ''); | |
y = new Ctor(1); | |
y.e = str.length - i; | |
y.d = convertBase(finiteToString(y), 10, base); | |
y.e = y.d.length; | |
} | |
xd = convertBase(str, 10, base); | |
e = len = xd.length; | |
// Remove trailing zeros. | |
for (; xd[--len] == 0;) xd.pop(); | |
if (!xd[0]) { | |
str = isExp ? '0p+0' : '0'; | |
} else { | |
if (i < 0) { | |
e--; | |
} else { | |
x = new Ctor(x); | |
x.d = xd; | |
x.e = e; | |
x = divide(x, y, sd, rm, 0, base); | |
xd = x.d; | |
e = x.e; | |
roundUp = inexact; | |
} | |
// The rounding digit, i.e. the digit after the digit that may be rounded up. | |
i = xd[sd]; | |
k = base / 2; | |
roundUp = roundUp || xd[sd + 1] !== void 0; | |
roundUp = rm < 4 | |
? (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2)) | |
: i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 || | |
rm === (x.s < 0 ? 8 : 7)); | |
xd.length = sd; | |
if (roundUp) { | |
// Rounding up may mean the previous digit has to be rounded up and so on. | |
for (; ++xd[--sd] > base - 1;) { | |
xd[sd] = 0; | |
if (!sd) { | |
++e; | |
xd.unshift(1); | |
} | |
} | |
} | |
// Determine trailing zeros. | |
for (len = xd.length; !xd[len - 1]; --len); | |
// E.g. [4, 11, 15] becomes 4bf. | |
for (i = 0, str = ''; i < len; i++) str += NUMERALS.charAt(xd[i]); | |
// Add binary exponent suffix? | |
if (isExp) { | |
if (len > 1) { | |
if (baseOut == 16 || baseOut == 8) { | |
i = baseOut == 16 ? 4 : 3; | |
for (--len; len % i; len++) str += '0'; | |
xd = convertBase(str, base, baseOut); | |
for (len = xd.length; !xd[len - 1]; --len); | |
// xd[0] will always be be 1 | |
for (i = 1, str = '1.'; i < len; i++) str += NUMERALS.charAt(xd[i]); | |
} else { | |
str = str.charAt(0) + '.' + str.slice(1); | |
} | |
} | |
str = str + (e < 0 ? 'p' : 'p+') + e; | |
} else if (e < 0) { | |
for (; ++e;) str = '0' + str; | |
str = '0.' + str; | |
} else { | |
if (++e > len) for (e -= len; e-- ;) str += '0'; | |
else if (e < len) str = str.slice(0, e) + '.' + str.slice(e); | |
} | |
} | |
str = (baseOut == 16 ? '0x' : baseOut == 2 ? '0b' : baseOut == 8 ? '0o' : '') + str; | |
} | |
return x.s < 0 ? '-' + str : str; | |
} | |
// Does not strip trailing zeros. | |
function truncate(arr, len) { | |
if (arr.length > len) { | |
arr.length = len; | |
return true; | |
} | |
} | |
// Decimal methods | |
/* | |
* abs | |
* acos | |
* acosh | |
* add | |
* asin | |
* asinh | |
* atan | |
* atanh | |
* atan2 | |
* cbrt | |
* ceil | |
* clamp | |
* clone | |
* config | |
* cos | |
* cosh | |
* div | |
* exp | |
* floor | |
* hypot | |
* ln | |
* log | |
* log2 | |
* log10 | |
* max | |
* min | |
* mod | |
* mul | |
* pow | |
* random | |
* round | |
* set | |
* sign | |
* sin | |
* sinh | |
* sqrt | |
* sub | |
* sum | |
* tan | |
* tanh | |
* trunc | |
*/ | |
/* | |
* Return a new Decimal whose value is the absolute value of `x`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function abs(x) { | |
return new this(x).abs(); | |
} | |
/* | |
* Return a new Decimal whose value is the arccosine in radians of `x`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function acos(x) { | |
return new this(x).acos(); | |
} | |
/* | |
* Return a new Decimal whose value is the inverse of the hyperbolic cosine of `x`, rounded to | |
* `precision` significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function acosh(x) { | |
return new this(x).acosh(); | |
} | |
/* | |
* Return a new Decimal whose value is the sum of `x` and `y`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* y {number|string|Decimal} | |
* | |
*/ | |
function add(x, y) { | |
return new this(x).plus(y); | |
} | |
/* | |
* Return a new Decimal whose value is the arcsine in radians of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function asin(x) { | |
return new this(x).asin(); | |
} | |
/* | |
* Return a new Decimal whose value is the inverse of the hyperbolic sine of `x`, rounded to | |
* `precision` significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function asinh(x) { | |
return new this(x).asinh(); | |
} | |
/* | |
* Return a new Decimal whose value is the arctangent in radians of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function atan(x) { | |
return new this(x).atan(); | |
} | |
/* | |
* Return a new Decimal whose value is the inverse of the hyperbolic tangent of `x`, rounded to | |
* `precision` significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function atanh(x) { | |
return new this(x).atanh(); | |
} | |
/* | |
* Return a new Decimal whose value is the arctangent in radians of `y/x` in the range -pi to pi | |
* (inclusive), rounded to `precision` significant digits using rounding mode `rounding`. | |
* | |
* Domain: [-Infinity, Infinity] | |
* Range: [-pi, pi] | |
* | |
* y {number|string|Decimal} The y-coordinate. | |
* x {number|string|Decimal} The x-coordinate. | |
* | |
* atan2(±0, -0) = ±pi | |
* atan2(±0, +0) = ±0 | |
* atan2(±0, -x) = ±pi for x > 0 | |
* atan2(±0, x) = ±0 for x > 0 | |
* atan2(-y, ±0) = -pi/2 for y > 0 | |
* atan2(y, ±0) = pi/2 for y > 0 | |
* atan2(±y, -Infinity) = ±pi for finite y > 0 | |
* atan2(±y, +Infinity) = ±0 for finite y > 0 | |
* atan2(±Infinity, x) = ±pi/2 for finite x | |
* atan2(±Infinity, -Infinity) = ±3*pi/4 | |
* atan2(±Infinity, +Infinity) = ±pi/4 | |
* atan2(NaN, x) = NaN | |
* atan2(y, NaN) = NaN | |
* | |
*/ | |
function atan2(y, x) { | |
y = new this(y); | |
x = new this(x); | |
var r, | |
pr = this.precision, | |
rm = this.rounding, | |
wpr = pr + 4; | |
// Either NaN | |
if (!y.s || !x.s) { | |
r = new this(NaN); | |
// Both ±Infinity | |
} else if (!y.d && !x.d) { | |
r = getPi(this, wpr, 1).times(x.s > 0 ? 0.25 : 0.75); | |
r.s = y.s; | |
// x is ±Infinity or y is ±0 | |
} else if (!x.d || y.isZero()) { | |
r = x.s < 0 ? getPi(this, pr, rm) : new this(0); | |
r.s = y.s; | |
// y is ±Infinity or x is ±0 | |
} else if (!y.d || x.isZero()) { | |
r = getPi(this, wpr, 1).times(0.5); | |
r.s = y.s; | |
// Both non-zero and finite | |
} else if (x.s < 0) { | |
this.precision = wpr; | |
this.rounding = 1; | |
r = this.atan(divide(y, x, wpr, 1)); | |
x = getPi(this, wpr, 1); | |
this.precision = pr; | |
this.rounding = rm; | |
r = y.s < 0 ? r.minus(x) : r.plus(x); | |
} else { | |
r = this.atan(divide(y, x, wpr, 1)); | |
} | |
return r; | |
} | |
/* | |
* Return a new Decimal whose value is the cube root of `x`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function cbrt(x) { | |
return new this(x).cbrt(); | |
} | |
/* | |
* Return a new Decimal whose value is `x` rounded to an integer using `ROUND_CEIL`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function ceil(x) { | |
return finalise(x = new this(x), x.e + 1, 2); | |
} | |
/* | |
* Return a new Decimal whose value is `x` clamped to the range delineated by `min` and `max`. | |
* | |
* x {number|string|Decimal} | |
* min {number|string|Decimal} | |
* max {number|string|Decimal} | |
* | |
*/ | |
function clamp(x, min, max) { | |
return new this(x).clamp(min, max); | |
} | |
/* | |
* Configure global settings for a Decimal constructor. | |
* | |
* `obj` is an object with one or more of the following properties, | |
* | |
* precision {number} | |
* rounding {number} | |
* toExpNeg {number} | |
* toExpPos {number} | |
* maxE {number} | |
* minE {number} | |
* modulo {number} | |
* crypto {boolean|number} | |
* defaults {true} | |
* | |
* E.g. Decimal.config({ precision: 20, rounding: 4 }) | |
* | |
*/ | |
function config(obj) { | |
if (!obj || typeof obj !== 'object') throw Error(decimalError + 'Object expected'); | |
var i, p, v, | |
useDefaults = obj.defaults === true, | |
ps = [ | |
'precision', 1, MAX_DIGITS, | |
'rounding', 0, 8, | |
'toExpNeg', -EXP_LIMIT, 0, | |
'toExpPos', 0, EXP_LIMIT, | |
'maxE', 0, EXP_LIMIT, | |
'minE', -EXP_LIMIT, 0, | |
'modulo', 0, 9 | |
]; | |
for (i = 0; i < ps.length; i += 3) { | |
if (p = ps[i], useDefaults) this[p] = DEFAULTS[p]; | |
if ((v = obj[p]) !== void 0) { | |
if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v; | |
else throw Error(invalidArgument + p + ': ' + v); | |
} | |
} | |
if (p = 'crypto', useDefaults) this[p] = DEFAULTS[p]; | |
if ((v = obj[p]) !== void 0) { | |
if (v === true || v === false || v === 0 || v === 1) { | |
if (v) { | |
if (typeof crypto != 'undefined' && crypto && | |
(crypto.getRandomValues || crypto.randomBytes)) { | |
this[p] = true; | |
} else { | |
throw Error(cryptoUnavailable); | |
} | |
} else { | |
this[p] = false; | |
} | |
} else { | |
throw Error(invalidArgument + p + ': ' + v); | |
} | |
} | |
return this; | |
} | |
/* | |
* Return a new Decimal whose value is the cosine of `x`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function cos(x) { | |
return new this(x).cos(); | |
} | |
/* | |
* Return a new Decimal whose value is the hyperbolic cosine of `x`, rounded to precision | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function cosh(x) { | |
return new this(x).cosh(); | |
} | |
/* | |
* Create and return a Decimal constructor with the same configuration properties as this Decimal | |
* constructor. | |
* | |
*/ | |
function clone(obj) { | |
var i, p, ps; | |
/* | |
* The Decimal constructor and exported function. | |
* Return a new Decimal instance. | |
* | |
* v {number|string|Decimal} A numeric value. | |
* | |
*/ | |
function Decimal(v) { | |
var e, i, t, | |
x = this; | |
// Decimal called without new. | |
if (!(x instanceof Decimal)) return new Decimal(v); | |
// Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor | |
// which points to Object. | |
x.constructor = Decimal; | |
// Duplicate. | |
if (isDecimalInstance(v)) { | |
x.s = v.s; | |
if (external) { | |
if (!v.d || v.e > Decimal.maxE) { | |
// Infinity. | |
x.e = NaN; | |
x.d = null; | |
} else if (v.e < Decimal.minE) { | |
// Zero. | |
x.e = 0; | |
x.d = [0]; | |
} else { | |
x.e = v.e; | |
x.d = v.d.slice(); | |
} | |
} else { | |
x.e = v.e; | |
x.d = v.d ? v.d.slice() : v.d; | |
} | |
return; | |
} | |
t = typeof v; | |
if (t === 'number') { | |
if (v === 0) { | |
x.s = 1 / v < 0 ? -1 : 1; | |
x.e = 0; | |
x.d = [0]; | |
return; | |
} | |
if (v < 0) { | |
v = -v; | |
x.s = -1; | |
} else { | |
x.s = 1; | |
} | |
// Fast path for small integers. | |
if (v === ~~v && v < 1e7) { | |
for (e = 0, i = v; i >= 10; i /= 10) e++; | |
if (external) { | |
if (e > Decimal.maxE) { | |
x.e = NaN; | |
x.d = null; | |
} else if (e < Decimal.minE) { | |
x.e = 0; | |
x.d = [0]; | |
} else { | |
x.e = e; | |
x.d = [v]; | |
} | |
} else { | |
x.e = e; | |
x.d = [v]; | |
} | |
return; | |
// Infinity, NaN. | |
} else if (v * 0 !== 0) { | |
if (!v) x.s = NaN; | |
x.e = NaN; | |
x.d = null; | |
return; | |
} | |
return parseDecimal(x, v.toString()); | |
} else if (t !== 'string') { | |
throw Error(invalidArgument + v); | |
} | |
// Minus sign? | |
if ((i = v.charCodeAt(0)) === 45) { | |
v = v.slice(1); | |
x.s = -1; | |
} else { | |
// Plus sign? | |
if (i === 43) v = v.slice(1); | |
x.s = 1; | |
} | |
return isDecimal.test(v) ? parseDecimal(x, v) : parseOther(x, v); | |
} | |
Decimal.prototype = P; | |
Decimal.ROUND_UP = 0; | |
Decimal.ROUND_DOWN = 1; | |
Decimal.ROUND_CEIL = 2; | |
Decimal.ROUND_FLOOR = 3; | |
Decimal.ROUND_HALF_UP = 4; | |
Decimal.ROUND_HALF_DOWN = 5; | |
Decimal.ROUND_HALF_EVEN = 6; | |
Decimal.ROUND_HALF_CEIL = 7; | |
Decimal.ROUND_HALF_FLOOR = 8; | |
Decimal.EUCLID = 9; | |
Decimal.config = Decimal.set = config; | |
Decimal.clone = clone; | |
Decimal.isDecimal = isDecimalInstance; | |
Decimal.abs = abs; | |
Decimal.acos = acos; | |
Decimal.acosh = acosh; // ES6 | |
Decimal.add = add; | |
Decimal.asin = asin; | |
Decimal.asinh = asinh; // ES6 | |
Decimal.atan = atan; | |
Decimal.atanh = atanh; // ES6 | |
Decimal.atan2 = atan2; | |
Decimal.cbrt = cbrt; // ES6 | |
Decimal.ceil = ceil; | |
Decimal.clamp = clamp; | |
Decimal.cos = cos; | |
Decimal.cosh = cosh; // ES6 | |
Decimal.div = div; | |
Decimal.exp = exp; | |
Decimal.floor = floor; | |
Decimal.hypot = hypot; // ES6 | |
Decimal.ln = ln; | |
Decimal.log = log; | |
Decimal.log10 = log10; // ES6 | |
Decimal.log2 = log2; // ES6 | |
Decimal.max = max; | |
Decimal.min = min; | |
Decimal.mod = mod; | |
Decimal.mul = mul; | |
Decimal.pow = pow; | |
Decimal.random = random; | |
Decimal.round = round; | |
Decimal.sign = sign; // ES6 | |
Decimal.sin = sin; | |
Decimal.sinh = sinh; // ES6 | |
Decimal.sqrt = sqrt; | |
Decimal.sub = sub; | |
Decimal.sum = sum; | |
Decimal.tan = tan; | |
Decimal.tanh = tanh; // ES6 | |
Decimal.trunc = trunc; // ES6 | |
if (obj === void 0) obj = {}; | |
if (obj) { | |
if (obj.defaults !== true) { | |
ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'maxE', 'minE', 'modulo', 'crypto']; | |
for (i = 0; i < ps.length;) if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p]; | |
} | |
} | |
Decimal.config(obj); | |
return Decimal; | |
} | |
/* | |
* Return a new Decimal whose value is `x` divided by `y`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* y {number|string|Decimal} | |
* | |
*/ | |
function div(x, y) { | |
return new this(x).div(y); | |
} | |
/* | |
* Return a new Decimal whose value is the natural exponential of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} The power to which to raise the base of the natural log. | |
* | |
*/ | |
function exp(x) { | |
return new this(x).exp(); | |
} | |
/* | |
* Return a new Decimal whose value is `x` round to an integer using `ROUND_FLOOR`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function floor(x) { | |
return finalise(x = new this(x), x.e + 1, 3); | |
} | |
/* | |
* Return a new Decimal whose value is the square root of the sum of the squares of the arguments, | |
* rounded to `precision` significant digits using rounding mode `rounding`. | |
* | |
* hypot(a, b, ...) = sqrt(a^2 + b^2 + ...) | |
* | |
* arguments {number|string|Decimal} | |
* | |
*/ | |
function hypot() { | |
var i, n, | |
t = new this(0); | |
external = false; | |
for (i = 0; i < arguments.length;) { | |
n = new this(arguments[i++]); | |
if (!n.d) { | |
if (n.s) { | |
external = true; | |
return new this(1 / 0); | |
} | |
t = n; | |
} else if (t.d) { | |
t = t.plus(n.times(n)); | |
} | |
} | |
external = true; | |
return t.sqrt(); | |
} | |
/* | |
* Return true if object is a Decimal instance (where Decimal is any Decimal constructor), | |
* otherwise return false. | |
* | |
*/ | |
function isDecimalInstance(obj) { | |
return obj instanceof Decimal || obj && obj.toStringTag === tag || false; | |
} | |
/* | |
* Return a new Decimal whose value is the natural logarithm of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function ln(x) { | |
return new this(x).ln(); | |
} | |
/* | |
* Return a new Decimal whose value is the log of `x` to the base `y`, or to base 10 if no base | |
* is specified, rounded to `precision` significant digits using rounding mode `rounding`. | |
* | |
* log[y](x) | |
* | |
* x {number|string|Decimal} The argument of the logarithm. | |
* y {number|string|Decimal} The base of the logarithm. | |
* | |
*/ | |
function log(x, y) { | |
return new this(x).log(y); | |
} | |
/* | |
* Return a new Decimal whose value is the base 2 logarithm of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function log2(x) { | |
return new this(x).log(2); | |
} | |
/* | |
* Return a new Decimal whose value is the base 10 logarithm of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function log10(x) { | |
return new this(x).log(10); | |
} | |
/* | |
* Return a new Decimal whose value is the maximum of the arguments. | |
* | |
* arguments {number|string|Decimal} | |
* | |
*/ | |
function max() { | |
return maxOrMin(this, arguments, 'lt'); | |
} | |
/* | |
* Return a new Decimal whose value is the minimum of the arguments. | |
* | |
* arguments {number|string|Decimal} | |
* | |
*/ | |
function min() { | |
return maxOrMin(this, arguments, 'gt'); | |
} | |
/* | |
* Return a new Decimal whose value is `x` modulo `y`, rounded to `precision` significant digits | |
* using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* y {number|string|Decimal} | |
* | |
*/ | |
function mod(x, y) { | |
return new this(x).mod(y); | |
} | |
/* | |
* Return a new Decimal whose value is `x` multiplied by `y`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* y {number|string|Decimal} | |
* | |
*/ | |
function mul(x, y) { | |
return new this(x).mul(y); | |
} | |
/* | |
* Return a new Decimal whose value is `x` raised to the power `y`, rounded to precision | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} The base. | |
* y {number|string|Decimal} The exponent. | |
* | |
*/ | |
function pow(x, y) { | |
return new this(x).pow(y); | |
} | |
/* | |
* Returns a new Decimal with a random value equal to or greater than 0 and less than 1, and with | |
* `sd`, or `Decimal.precision` if `sd` is omitted, significant digits (or less if trailing zeros | |
* are produced). | |
* | |
* [sd] {number} Significant digits. Integer, 0 to MAX_DIGITS inclusive. | |
* | |
*/ | |
function random(sd) { | |
var d, e, k, n, | |
i = 0, | |
r = new this(1), | |
rd = []; | |
if (sd === void 0) sd = this.precision; | |
else checkInt32(sd, 1, MAX_DIGITS); | |
k = Math.ceil(sd / LOG_BASE); | |
if (!this.crypto) { | |
for (; i < k;) rd[i++] = Math.random() * 1e7 | 0; | |
// Browsers supporting crypto.getRandomValues. | |
} else if (crypto.getRandomValues) { | |
d = crypto.getRandomValues(new Uint32Array(k)); | |
for (; i < k;) { | |
n = d[i]; | |
// 0 <= n < 4294967296 | |
// Probability n >= 4.29e9, is 4967296 / 4294967296 = 0.00116 (1 in 865). | |
if (n >= 4.29e9) { | |
d[i] = crypto.getRandomValues(new Uint32Array(1))[0]; | |
} else { | |
// 0 <= n <= 4289999999 | |
// 0 <= (n % 1e7) <= 9999999 | |
rd[i++] = n % 1e7; | |
} | |
} | |
// Node.js supporting crypto.randomBytes. | |
} else if (crypto.randomBytes) { | |
// buffer | |
d = crypto.randomBytes(k *= 4); | |
for (; i < k;) { | |
// 0 <= n < 2147483648 | |
n = d[i] + (d[i + 1] << 8) + (d[i + 2] << 16) + ((d[i + 3] & 0x7f) << 24); | |
// Probability n >= 2.14e9, is 7483648 / 2147483648 = 0.0035 (1 in 286). | |
if (n >= 2.14e9) { | |
crypto.randomBytes(4).copy(d, i); | |
} else { | |
// 0 <= n <= 2139999999 | |
// 0 <= (n % 1e7) <= 9999999 | |
rd.push(n % 1e7); | |
i += 4; | |
} | |
} | |
i = k / 4; | |
} else { | |
throw Error(cryptoUnavailable); | |
} | |
k = rd[--i]; | |
sd %= LOG_BASE; | |
// Convert trailing digits to zeros according to sd. | |
if (k && sd) { | |
n = mathpow(10, LOG_BASE - sd); | |
rd[i] = (k / n | 0) * n; | |
} | |
// Remove trailing words which are zero. | |
for (; rd[i] === 0; i--) rd.pop(); | |
// Zero? | |
if (i < 0) { | |
e = 0; | |
rd = [0]; | |
} else { | |
e = -1; | |
// Remove leading words which are zero and adjust exponent accordingly. | |
for (; rd[0] === 0; e -= LOG_BASE) rd.shift(); | |
// Count the digits of the first word of rd to determine leading zeros. | |
for (k = 1, n = rd[0]; n >= 10; n /= 10) k++; | |
// Adjust the exponent for leading zeros of the first word of rd. | |
if (k < LOG_BASE) e -= LOG_BASE - k; | |
} | |
r.e = e; | |
r.d = rd; | |
return r; | |
} | |
/* | |
* Return a new Decimal whose value is `x` rounded to an integer using rounding mode `rounding`. | |
* | |
* To emulate `Math.round`, set rounding to 7 (ROUND_HALF_CEIL). | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function round(x) { | |
return finalise(x = new this(x), x.e + 1, this.rounding); | |
} | |
/* | |
* Return | |
* 1 if x > 0, | |
* -1 if x < 0, | |
* 0 if x is 0, | |
* -0 if x is -0, | |
* NaN otherwise | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function sign(x) { | |
x = new this(x); | |
return x.d ? (x.d[0] ? x.s : 0 * x.s) : x.s || NaN; | |
} | |
/* | |
* Return a new Decimal whose value is the sine of `x`, rounded to `precision` significant digits | |
* using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function sin(x) { | |
return new this(x).sin(); | |
} | |
/* | |
* Return a new Decimal whose value is the hyperbolic sine of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function sinh(x) { | |
return new this(x).sinh(); | |
} | |
/* | |
* Return a new Decimal whose value is the square root of `x`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function sqrt(x) { | |
return new this(x).sqrt(); | |
} | |
/* | |
* Return a new Decimal whose value is `x` minus `y`, rounded to `precision` significant digits | |
* using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} | |
* y {number|string|Decimal} | |
* | |
*/ | |
function sub(x, y) { | |
return new this(x).sub(y); | |
} | |
/* | |
* Return a new Decimal whose value is the sum of the arguments, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* Only the result is rounded, not the intermediate calculations. | |
* | |
* arguments {number|string|Decimal} | |
* | |
*/ | |
function sum() { | |
var i = 0, | |
args = arguments, | |
x = new this(args[i]); | |
external = false; | |
for (; x.s && ++i < args.length;) x = x.plus(args[i]); | |
external = true; | |
return finalise(x, this.precision, this.rounding); | |
} | |
/* | |
* Return a new Decimal whose value is the tangent of `x`, rounded to `precision` significant | |
* digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function tan(x) { | |
return new this(x).tan(); | |
} | |
/* | |
* Return a new Decimal whose value is the hyperbolic tangent of `x`, rounded to `precision` | |
* significant digits using rounding mode `rounding`. | |
* | |
* x {number|string|Decimal} A value in radians. | |
* | |
*/ | |
function tanh(x) { | |
return new this(x).tanh(); | |
} | |
/* | |
* Return a new Decimal whose value is `x` truncated to an integer. | |
* | |
* x {number|string|Decimal} | |
* | |
*/ | |
function trunc(x) { | |
return finalise(x = new this(x), x.e + 1, 1); | |
} | |
P[Symbol.for('nodejs.util.inspect.custom')] = P.toString; | |
P[Symbol.toStringTag] = 'Decimal'; | |
// Create and configure initial Decimal constructor. | |
export var Decimal = P.constructor = clone(DEFAULTS); | |
// Create the internal constants from their string values. | |
LN10 = new Decimal(LN10); | |
PI = new Decimal(PI); | |
export default Decimal; | |