amitesh11's picture
Upload 3019 files
369fac9 verified
raw
history blame
5.16 kB
import mediapipe as mp
import cv2
from django.conf import settings
from .plank import PlankDetection
from .bicep_curl import BicepCurlDetection
from .squat import SquatDetection
from .lunge import LungeDetection
from .utils import rescale_frame
# Drawing helpers
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
EXERCISE_DETECTIONS = None
def load_machine_learning_models():
"""Load all machine learning models"""
global EXERCISE_DETECTIONS
if EXERCISE_DETECTIONS is not None:
return
print("Loading ML models ...")
EXERCISE_DETECTIONS = {
"plank": PlankDetection(),
"bicep_curl": BicepCurlDetection(),
"squat": SquatDetection(),
"lunge": LungeDetection(),
}
def pose_detection(
video_file_path: str, video_name_to_save: str, rescale_percent: float = 40
):
"""Pose detection with MediaPipe Pose
Args:
video_file_path (str): path to video
video_name_to_save (str): path to save analyzed video
rescale_percent (float, optional): Percentage to scale back from the original video size. Defaults to 40.
"""
cap = cv2.VideoCapture(video_file_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) * rescale_percent / 100)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * rescale_percent / 100)
size = (width, height)
fps = int(cap.get(cv2.CAP_PROP_FPS))
fourcc = cv2.VideoWriter_fourcc(*"avc1")
save_to_path = f"{settings.MEDIA_ROOT}/{video_name_to_save}"
out = cv2.VideoWriter(save_to_path, fourcc, fps, size)
print("PROCESSING VIDEO ...")
with mp_pose.Pose(
min_detection_confidence=0.8, min_tracking_confidence=0.8
) as pose:
while cap.isOpened():
ret, image = cap.read()
if not ret:
break
image = rescale_frame(image, rescale_percent)
# Recolor image from BGR to RGB for mediapipe
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
# Recolor image from BGR to RGB for mediapipe
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(
color=(244, 117, 66), thickness=2, circle_radius=2
),
mp_drawing.DrawingSpec(
color=(245, 66, 230), thickness=2, circle_radius=1
),
)
out.write(image)
print(f"PROCESSED, save to {save_to_path}.")
return
def exercise_detection(
video_file_path: str,
video_name_to_save: str,
exercise_type: str,
rescale_percent: float = 40,
) -> dict:
"""Analyzed Exercise Video
Args:
video_file_path (str): path to video
video_name_to_save (str): path to save analyzed video
exercise_type (str): exercise type
rescale_percent (float, optional): Percentage to scale back from the original video size. Defaults to 40.
Raises:
Exception: Not supported exercise type
Returns:
dict: Dictionary of analyzed stats from the video
"""
exercise_detection = EXERCISE_DETECTIONS.get(exercise_type)
if not exercise_detection:
raise Exception("Not supported exercise.")
cap = cv2.VideoCapture(video_file_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) * rescale_percent / 100)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * rescale_percent / 100)
size = (width, height)
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = 0
fourcc = cv2.VideoWriter_fourcc(*"avc1")
saved_path = f"{settings.MEDIA_ROOT}/{video_name_to_save}"
out = cv2.VideoWriter(saved_path, fourcc, fps, size)
print("PROCESSING VIDEO ...")
with mp_pose.Pose(
min_detection_confidence=0.8, min_tracking_confidence=0.8
) as pose:
while cap.isOpened():
ret, image = cap.read()
if not ret:
break
# Calculate timestamp
frame_count += 1
timestamp = int(frame_count / fps)
image = rescale_frame(image, rescale_percent)
# Recolor image from BGR to RGB for mediapipe
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
# Recolor image from BGR to RGB for mediapipe
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.pose_landmarks:
exercise_detection.detect(
mp_results=results, image=image, timestamp=timestamp
)
out.write(image)
print(f"PROCESSED. Save path: {saved_path}")
processed_results = exercise_detection.handle_detected_results(
video_name=video_name_to_save
)
exercise_detection.clear_results()
return processed_results