Spaces:
Runtime error
Runtime error
File size: 8,195 Bytes
f415c73 d2fd675 f415c73 d2fd675 f415c73 d2fd675 f415c73 3c7abdd f415c73 d2fd675 f415c73 d2fd675 f415c73 3c7abdd f415c73 3c7abdd f415c73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import numpy as np
import h5py
import os
import mercury as mr
import sys
sys.path.append('/plot_scripts/')
from map_packages_colors_1v1 import *
from plot_scripts_1v1 import *
# print(" Tasks to choose from : ")
# print(" Heisenberg dynamics (hdyn), Random Quantum Circuits (rqc), Quantum Fourier Transform (qft)")
# print("###############################")
# print(" Package list to choose from :")
# print(" cirq, hybridq, intel_qs_cpp, pennylane_l, projectq, qcgpu, qibojit, qrack_sch, qsimcirq, quest, svsim, yao, hiq, pennylane, qibo, qiskit, qulacs")
# print("###############################")
# print(" Compute capability choices for packages :")
# print(" singlethread, multithread, gpu")
# print("###############################")
# print(" Precision choices for different compute capabilities :")
# print(" sp (single precision), dp (double precision)")
# print("###############################")
# task_1 = input(" Enter the task for the first package : ")
# package_1 = input(" Enter the choice of the package, package 1 : ")
# p1_com_cap = input(" Enter the choice of the compute capability for package 1 : ")
# p1_prec = input(" Enter the choice of the precision for package 1 : ")
# task_2 = input("Enter the task for the second package : ")
# package_2 = input(" Enter the choice of the package, package 2 : ")
# p2_com_cap = input(" Enter the choice of the compute capability for package 2 : ")
# p2_prec = input(" Enter the choice of the precision for package 2 : ")
def abs_time(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr, N_end):
if t1 == "Heisenberg dynamics":
t1 = "hdyn"
elif t1 == "Random Quantum Circuit":
t1 = "rqc"
elif t1 == "Quantum Fourier Transform":
t1 = "qft"
if p1_cc == "Singlethread":
p1_cc = "singlethread"
elif p1_cc == "Multithread":
p1_cc = "multithread"
elif p1_cc == "GPU":
p1_cc = "gpu"
if p1_pr == "Single":
p1_pr = "sp"
elif p1_pr == "Double":
p1_pr = "dp"
if t2 == "Heisenberg dynamics":
t2 = "hdyn"
elif t2 == "Random Quantum Circuit":
t2 = "rqc"
elif t2 == "Quantum Fourier Transform":
t2 = "qft"
if p2_cc == "Singlethread":
p2_cc = "singlethread"
elif p2_cc == "Multithread":
p2_cc = "multithread"
elif p2_cc == "GPU":
p2_cc = "gpu"
if p2_pr == "Single":
p2_pr = "sp"
elif p2_pr == "Double":
p2_pr = "dp"
if t1 == 'hdyn' or t1 == 'qft':
N_arr_t1 = np.arange(6, N_end, 2)
elif t1 == 'rqc':
N_arr_t1 = np.arange(12, N_end, 2)
if t2 == 'hdyn' or t2 == 'qft':
N_arr_t2 = np.arange(6, N_end, 2)
elif t2 == 'rqc':
N_arr_t2 = np.arange(12, N_end, 2)
dir = os.getcwd()
data_file_p1 = dir + '/data/{}/{}_{}_{}.h5'.format(t1, p1, p1_cc, p1_pr)
data_file_p2 = dir + '/data/{}/{}_{}_{}.h5'.format(t2, p2, p2_cc, p2_pr)
fig, ax = plt.subplots()
mr.Md(f"TtS performance of the selected options")
if os.path.isfile(data_file_p1) and os.path.isfile(data_file_p2):
h5f_1 = h5py.File(data_file_p1, 'r')
dat_1 = h5f_1[storage_dict[p1]][:]
h5f_1.close()
h5f_2 = h5py.File(data_file_p2, 'r')
dat_2 = h5f_2[storage_dict[p2]][:]
h5f_2.close()
plot_abs_data_n_arr(N_arr_t1, dat_1, p1+'_'+t1+'_'+p1_cc+'_'+p1_pr)
plot_abs_data_n_arr(N_arr_t2, dat_2, p2+'_'+t2+'_'+p2_cc+'_'+p2_pr)
# save_flag = input("Do you want to save the plot?")
# if save_flag == "Y":
# gen_settings(fig, ax, r"N (system size)", r"Time ($t_{package}$)", False, True, True, 10**-1, 10**5, "out", "perf_{}_{}_{}_{}_{}_{}_{}_{}.pdf".format(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr))
# else:
if N_arr_t1[0] > N_arr_t2[0]:
N_arr = N_arr_t2
else:
N_arr = N_arr_t1
gen_settings(fig, ax, r"N (system size)", r"Time ($t_{package}$)", False, True, True, N_arr[0]-2, N_arr[-1], True, 10**-1, 10**5, "out", None)
else:
mr.Md(f" Re-select the options as the requested configuration is not supported (check the table in the index page for supported configurations)")
# abs_time(task_1, package_1, p1_com_cap, p1_prec, task_2, package_2, p2_com_cap, p2_prec)
def relative_time_wrt_pack(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr, N_end):
mr.Md("___")
mr.Md(f"Relative performance")
if t1 == "Heisenberg dynamics":
t1 = "hdyn"
elif t1 == "Random Quantum Circuit":
t1 = "rqc"
elif t1 == "Quantum Fourier Transform":
t1 = "qft"
if p1_cc == "Singlethread":
p1_cc = "singlethread"
elif p1_cc == "Multithread":
p1_cc = "multithread"
elif p1_cc == "GPU":
p1_cc = "gpu"
if p1_pr == "Single":
p1_pr = "sp"
elif p1_pr == "Double":
p1_pr = "dp"
if t2 == "Heisenberg dynamics":
t2 = "hdyn"
elif t2 == "Random Quantum Circuit":
t2 = "rqc"
elif t2 == "Quantum Fourier Transform":
t2 = "qft"
if p2_cc == "Singlethread":
p2_cc = "singlethread"
elif p2_cc == "Multithread":
p2_cc = "multithread"
elif p2_cc == "GPU":
p2_cc = "gpu"
if p2_pr == "Single":
p2_pr = "sp"
elif p2_pr == "Double":
p2_pr = "dp"
if t1 == 'hdyn' or t1 == 'qft':
N_arr_t1 = np.arange(6, N_end, 2)
elif t1 == 'rqc':
N_arr_t1 = np.arange(12, N_end, 2)
if t2 == 'hdyn' or t2 == 'qft':
N_arr_t2 = np.arange(6, N_end, 2)
elif t2 == 'rqc':
N_arr_t2 = np.arange(12, N_end, 2)
fig, ax = plt.subplots()
dir = os.getcwd()
data_file_p1 = dir + '/data/{}/{}_{}_{}.h5'.format(t1, p1, p1_cc, p1_pr)
data_file_p2 = dir + '/data/{}/{}_{}_{}.h5'.format(t2, p2, p2_cc, p2_pr)
if os.path.isfile(data_file_p1) and os.path.isfile(data_file_p2):
h5f_1 = h5py.File(data_file_p1, 'r')
dat_1 = h5f_1[storage_dict[p1]][:]
h5f_1.close()
h5f_2 = h5py.File(data_file_p2, 'r')
dat_2 = h5f_2[storage_dict[p2]][:]
h5f_2.close()
if np.sum(dat_1) > np.sum(dat_2):
if N_arr_t1[0] > N_arr_t2[0]:
dat_2 = dat_2[3:]
N_arr = N_arr_t1
elif N_arr_t1[0] < N_arr_t2[0]:
dat_1 = dat_1[3:]
N_arr = N_arr_t2
else:
N_arr = N_arr_t1
plot_comp_data_n_arr(N_arr, dat_1, dat_2, p1+'_'+t1+'_'+p1_cc+'_'+p1_pr)
plot_comp_data_n_arr(N_arr, dat_2, dat_2, p2+'_'+t2+'_'+p2_cc+'_'+p2_pr)
# save_flag = input("Do you want to save the plot?")
# if save_flag == "Y":
# gen_settings(fig, ax, r"N (system size)", r"Relative time - " + p2, False, True, True, 10**-1, 10**3, "out", "relative_perf_{}_{}_{}_{}_{}_{}_{}_{}.pdf".format(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr))
# else:
gen_settings(fig, ax, r"N (system size)", r"Relative time", False, True, True, N_arr[0]-2, N_arr[-1], True, 10**-1, 10**3, "out", None)
else:
if N_arr_t1[0] > N_arr_t2[0]:
dat_2 = dat_2[3:]
N_arr = N_arr_t1
elif N_arr_t1[0] < N_arr_t2[0]:
dat_1 = dat_1[3:]
N_arr = N_arr_t2
else:
N_arr = N_arr_t1
plot_comp_data_n_arr(N_arr, dat_2, dat_1, p2+'_'+t2+'_'+p2_cc+'_'+p2_pr)
plot_comp_data_n_arr(N_arr, dat_1, dat_1, p1+'_'+t1+'_'+p1_cc+'_'+p1_pr)
# save_flag = input("Do you want to save the plot?")
# if save_flag == "Y":
# gen_settings(fig, ax, r"N (system size)", r"Relative time", False, True, True, 10**-1, 10**3, "out", "relative_perf_{}_{}_{}_{}_{}_{}_{}_{}.pdf".format(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr))
# else:
gen_settings(fig, ax, r"N (system size)", r"Relative time", False, True, True, N_arr[0]-2, N_arr[-1], True, 10**-1, 10**3, "out", None)
# relative_time_wrt_pack(task_1, package_1, p1_com_cap, p1_prec, task_2, package_2, p2_com_cap, p2_prec)
|