File size: 8,195 Bytes
f415c73
 
 
 
d2fd675
 
f415c73
d2fd675
f415c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2fd675
 
f415c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7abdd
 
 
 
 
 
f415c73
d2fd675
f415c73
 
 
 
 
d2fd675
 
f415c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7abdd
f415c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7abdd
f415c73
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import h5py
import os

import mercury as mr

import sys
sys.path.append('/plot_scripts/')
from map_packages_colors_1v1 import *
from plot_scripts_1v1 import *

# print(" Tasks to choose from : ")
# print(" Heisenberg dynamics (hdyn), Random Quantum Circuits (rqc), Quantum Fourier Transform (qft)")
# print("###############################")
# print(" Package list to choose from :")
# print(" cirq,  hybridq, intel_qs_cpp, pennylane_l, projectq, qcgpu, qibojit, qrack_sch, qsimcirq, quest, svsim, yao, hiq, pennylane, qibo, qiskit, qulacs")
# print("###############################")
# print(" Compute capability choices for packages :")
# print(" singlethread, multithread, gpu")
# print("###############################")
# print(" Precision choices for different compute capabilities :")
# print(" sp (single precision), dp (double precision)")
# print("###############################")

# task_1 = input(" Enter the task for the first package : ")
# package_1 = input(" Enter the choice of the package, package 1 : ")
# p1_com_cap = input(" Enter the choice of the compute capability for package 1 : ")
# p1_prec = input(" Enter the choice of the precision for package 1 : ")

# task_2 = input("Enter the task for the second package : ")
# package_2 = input(" Enter the choice of the package, package 2 : ")
# p2_com_cap = input(" Enter the choice of the compute capability for package 2 : ")
# p2_prec = input(" Enter the choice of the precision for package 2 : ")

def abs_time(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr, N_end):

    if t1 == "Heisenberg dynamics":
        t1 = "hdyn"
    elif t1 == "Random Quantum Circuit":
        t1 = "rqc"
    elif t1 == "Quantum Fourier Transform":
        t1 = "qft"

    if p1_cc == "Singlethread":
        p1_cc = "singlethread"
    elif p1_cc == "Multithread":
        p1_cc = "multithread"
    elif p1_cc == "GPU":
        p1_cc = "gpu"

    if p1_pr == "Single":
        p1_pr = "sp"
    elif p1_pr == "Double":
        p1_pr = "dp"

    if t2 == "Heisenberg dynamics":
        t2 = "hdyn"
    elif t2 == "Random Quantum Circuit":
        t2 = "rqc"
    elif t2 == "Quantum Fourier Transform":
        t2 = "qft"

    if p2_cc == "Singlethread":
        p2_cc = "singlethread"
    elif p2_cc == "Multithread":
        p2_cc = "multithread"
    elif p2_cc == "GPU":
        p2_cc = "gpu"

    if p2_pr == "Single":
        p2_pr = "sp"
    elif p2_pr == "Double":
        p2_pr = "dp"

    if t1 == 'hdyn' or t1 == 'qft':
        N_arr_t1 = np.arange(6, N_end, 2)
    elif t1 == 'rqc':
        N_arr_t1 = np.arange(12, N_end, 2)

    if t2 == 'hdyn' or t2 == 'qft':
        N_arr_t2 = np.arange(6, N_end, 2)
    elif t2 == 'rqc':
        N_arr_t2 = np.arange(12, N_end, 2)

    dir = os.getcwd()
    data_file_p1 = dir + '/data/{}/{}_{}_{}.h5'.format(t1, p1, p1_cc, p1_pr)
    data_file_p2 = dir + '/data/{}/{}_{}_{}.h5'.format(t2, p2, p2_cc, p2_pr)

    fig, ax = plt.subplots()

    mr.Md(f"TtS performance of the selected options")

    if os.path.isfile(data_file_p1) and os.path.isfile(data_file_p2):
            h5f_1 = h5py.File(data_file_p1, 'r')
            dat_1 = h5f_1[storage_dict[p1]][:]
            h5f_1.close()

            h5f_2 = h5py.File(data_file_p2, 'r')
            dat_2 = h5f_2[storage_dict[p2]][:]
            h5f_2.close()

            plot_abs_data_n_arr(N_arr_t1, dat_1, p1+'_'+t1+'_'+p1_cc+'_'+p1_pr)
            plot_abs_data_n_arr(N_arr_t2, dat_2, p2+'_'+t2+'_'+p2_cc+'_'+p2_pr)
            # save_flag = input("Do you want to save the plot?")
            # if save_flag == "Y":
            #     gen_settings(fig, ax, r"N (system size)", r"Time ($t_{package}$)", False, True, True, 10**-1, 10**5, "out", "perf_{}_{}_{}_{}_{}_{}_{}_{}.pdf".format(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr))
            # else:
            if N_arr_t1[0] > N_arr_t2[0]:
                N_arr = N_arr_t2
            else:
                N_arr = N_arr_t1

            gen_settings(fig, ax, r"N (system size)", r"Time ($t_{package}$)", False, True, True, N_arr[0]-2, N_arr[-1], True, 10**-1, 10**5, "out", None)
    else:
        mr.Md(f" Re-select the options as the requested configuration is not supported (check the table in the index page for supported configurations)")

# abs_time(task_1, package_1, p1_com_cap, p1_prec, task_2, package_2, p2_com_cap, p2_prec)

def relative_time_wrt_pack(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr, N_end):

    mr.Md("___")
    mr.Md(f"Relative performance")

    if t1 == "Heisenberg dynamics":
        t1 = "hdyn"
    elif t1 == "Random Quantum Circuit":
        t1 = "rqc"
    elif t1 == "Quantum Fourier Transform":
        t1 = "qft"

    if p1_cc == "Singlethread":
        p1_cc = "singlethread"
    elif p1_cc == "Multithread":
        p1_cc = "multithread"
    elif p1_cc == "GPU":
        p1_cc = "gpu"

    if p1_pr == "Single":
        p1_pr = "sp"
    elif p1_pr == "Double":
        p1_pr = "dp"

    if t2 == "Heisenberg dynamics":
        t2 = "hdyn"
    elif t2 == "Random Quantum Circuit":
        t2 = "rqc"
    elif t2 == "Quantum Fourier Transform":
        t2 = "qft"

    if p2_cc == "Singlethread":
        p2_cc = "singlethread"
    elif p2_cc == "Multithread":
        p2_cc = "multithread"
    elif p2_cc == "GPU":
        p2_cc = "gpu"

    if p2_pr == "Single":
        p2_pr = "sp"
    elif p2_pr == "Double":
        p2_pr = "dp"

    if t1 == 'hdyn' or t1 == 'qft':
        N_arr_t1 = np.arange(6, N_end, 2)
    elif t1 == 'rqc':
        N_arr_t1 = np.arange(12, N_end, 2)

    if t2 == 'hdyn' or t2 == 'qft':
        N_arr_t2 = np.arange(6, N_end, 2)
    elif t2 == 'rqc':
        N_arr_t2 = np.arange(12, N_end, 2)

    fig, ax = plt.subplots()

    dir = os.getcwd()
    data_file_p1 = dir + '/data/{}/{}_{}_{}.h5'.format(t1, p1, p1_cc, p1_pr)
    data_file_p2 = dir + '/data/{}/{}_{}_{}.h5'.format(t2, p2, p2_cc, p2_pr)

    if os.path.isfile(data_file_p1) and os.path.isfile(data_file_p2):

        h5f_1 = h5py.File(data_file_p1, 'r')
        dat_1 = h5f_1[storage_dict[p1]][:]
        h5f_1.close()

        h5f_2 = h5py.File(data_file_p2, 'r')
        dat_2 = h5f_2[storage_dict[p2]][:]
        h5f_2.close()

        if np.sum(dat_1) > np.sum(dat_2):
            if N_arr_t1[0] > N_arr_t2[0]:
                dat_2 = dat_2[3:]
                N_arr = N_arr_t1
            elif N_arr_t1[0] < N_arr_t2[0]:
                dat_1 = dat_1[3:]
                N_arr = N_arr_t2
            else:
                N_arr = N_arr_t1
            plot_comp_data_n_arr(N_arr, dat_1, dat_2, p1+'_'+t1+'_'+p1_cc+'_'+p1_pr)
            plot_comp_data_n_arr(N_arr, dat_2, dat_2, p2+'_'+t2+'_'+p2_cc+'_'+p2_pr)
            # save_flag = input("Do you want to save the plot?")
            # if save_flag == "Y":
            #     gen_settings(fig, ax, r"N (system size)", r"Relative time - " + p2, False, True, True, 10**-1, 10**3, "out", "relative_perf_{}_{}_{}_{}_{}_{}_{}_{}.pdf".format(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr))
            # else:
            gen_settings(fig, ax, r"N (system size)", r"Relative time", False, True, True, N_arr[0]-2, N_arr[-1], True, 10**-1, 10**3, "out", None)
        else:
            if N_arr_t1[0] > N_arr_t2[0]:
                dat_2 = dat_2[3:]
                N_arr = N_arr_t1
            elif N_arr_t1[0] < N_arr_t2[0]:
                dat_1 = dat_1[3:]
                N_arr = N_arr_t2
            else:
                N_arr = N_arr_t1
            plot_comp_data_n_arr(N_arr, dat_2, dat_1, p2+'_'+t2+'_'+p2_cc+'_'+p2_pr)
            plot_comp_data_n_arr(N_arr, dat_1, dat_1, p1+'_'+t1+'_'+p1_cc+'_'+p1_pr)
            # save_flag = input("Do you want to save the plot?")
            # if save_flag == "Y":
            # gen_settings(fig, ax, r"N (system size)", r"Relative time", False, True, True, 10**-1, 10**3, "out", "relative_perf_{}_{}_{}_{}_{}_{}_{}_{}.pdf".format(t1, p1, p1_cc, p1_pr, t2, p2, p2_cc, p2_pr))
            # else:
            gen_settings(fig, ax, r"N (system size)", r"Relative time", False, True, True, N_arr[0]-2, N_arr[-1], True, 10**-1, 10**3, "out", None)

# relative_time_wrt_pack(task_1, package_1, p1_com_cap, p1_prec, task_2, package_2, p2_com_cap, p2_prec)