File size: 7,259 Bytes
d17e7e7
 
 
 
 
 
 
 
 
 
 
835cba9
d17e7e7
 
 
 
 
 
ebc6805
d17e7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835cba9
 
 
 
 
 
 
 
 
 
 
 
d17e7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835cba9
 
d17e7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import numpy as np
import h5py
import os

import mercury as mr

import sys
sys.path.append('/plot_scripts/')
from map_packages_colors_all import *
from plot_scripts_all import *

package_str = ['qiskit' , 'cirq', 'qsimcirq', 'pennylane', 'pennylane_l', 'qibo', 'qibojit', 'yao', 'quest', 'qulacs', 'intel_qs_cpp', 'projectq', 'svsim',  'hybridq', 'hiq', 'qcgpu', 'qrack_sch', 'cuquantum_qiskit', 'cuquantum_qsimcirq', 'qpanda', 'qpp', 'myqlm', 'myqlm_cpp', 'braket']


def _build_data_mat(task, cc_1, cc_2, pr, _n_arr):

    dir = os.getcwd()

    data_mat = np.log(np.zeros((len(package_str), len(_n_arr))))

    for p_i, pack in enumerate(package_str):

        dat_cc1 = dir + '/data/{}/{}_{}_{}.h5'.format(task, pack, cc_1, pr)
        dat_cc2 = dir + '/data/{}/{}_{}_{}.h5'.format(task, pack, cc_2, pr)

        if os.path.isfile(dat_cc1) and os.path.isfile(dat_cc2):

            h5f_cc1 = h5py.File(dat_cc1, 'r')
            dat_cc1 = h5f_cc1[storage_dict[pack]][:]
            h5f_cc1.close()

            h5f_cc2 = h5py.File(dat_cc2, 'r')
            dat_cc2 = h5f_cc2[storage_dict[pack]][:]
            h5f_cc2.close()

            ratio_arr = []

            if len(dat_cc1) == len(dat_cc2):
                for i, elem in enumerate(dat_cc1):
                    ratio_arr.append(elem/float(dat_cc2[i]))
            elif len(dat_cc1) > len(dat_cc2):
                for i, elem in enumerate(dat_cc2):
                    ratio_arr.append(dat_cc1[i]/float(elem))
            elif len(dat_cc2) > len(dat_cc1):
                for i, elem in enumerate(dat_cc1):
                    ratio_arr.append(elem/float(dat_cc2[i]))

            if len(_n_arr) > len(ratio_arr):
                for r_i, rat in enumerate(ratio_arr):
                    data_mat[p_i, r_i] = rat
            elif len(_n_arr) < len(ratio_arr):
                for n_i in range(len(_n_arr)):
                    data_mat[p_i, n_i] = ratio_arr[n_i]
            else:
                for ri, rat_v in enumerate(ratio_arr):
                    data_mat[p_i, ri] = rat_v

    return data_mat

def abs_time_pack(task, pr, N_end, cc_1, cc_2):

    if task == "Heisenberg dynamics":
        task = "hdyn"
    elif task == "Random Quantum Circuit":
        task = "rqc"
    elif task == "Quantum Fourier Transform":
        task = "qft"

    if cc_1 == "Singlethread":
        cc_1 = 'singlethread'
    elif cc_1 == "Multithread":
        cc_1 = 'multithread'
    elif cc_1 == "GPU":
        cc_1 = 'gpu'

    if cc_2 == "Singlethread":
        cc_2 = 'singlethread'
    elif cc_2 == "Multithread":
        cc_2 = 'multithread'
    elif cc_2 == "GPU":
        cc_2 = 'gpu'

    if pr == "Single":
        pr = "sp"
    elif pr == "Double":
        pr = "dp"

    fig, ax = plt.subplots()

    dir = os.getcwd()

    if task == 'hdyn' or task == 'qft':
        N_arr = np.arange(6, N_end, 2)
    elif task == 'rqc':
        N_arr = np.arange(12, N_end, 2)

    # if not os.path.isfile(dat_fst) and not os.path.isfile(dat_fmt) and not os.path.isfile(dat_fgpu):
    #     return mr.Md(f"Precision {pr} possibly not supported")

    data_mat = _build_data_mat(task, cc_1, cc_2, pr, N_arr)

    # params = {'figure.figsize': (10, 10)}
    # plt.rcParams.update(params)
    # plt.imshow(data_mat, cmap='OrRd')#, vmin=-16, vmax=0)

    if cc_1 == "singlethread" and cc_2 == "multithread":
        plt.imshow(data_mat, cmap='gist_heat_r', vmin=-4.5, vmax=30)
    #### ST/GPU
    elif cc_1 == "singlethread" and cc_2 == "gpu":
        # 800 single precision
        # 550 double precision
        plt.imshow(data_mat, cmap='gist_heat_r', vmin=-50., vmax=550)
    ### MT/GPU
    elif cc_1 == "multithread" and cc_2 == "gpu":
        plt.imshow(data_mat, cmap='gist_heat_r', vmin=-10., vmax=100)

    plt.yticks(range(len(pkg_str)), package_str)
    locs, labels = plt.yticks()

    # plt.setp(labels, rotation=90)
    plt.xticks(range(len(N_arr)), N_arr)
    # locs, labels = plt.xticks()

    ax.xaxis.set_major_locator(ticker.AutoLocator())
    ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())

    plt.colorbar()
    plt.tight_layout()
    # plt.savefig(fn)
    plt.show()

# abs_time_pack("Heisenberg dynamics", "Double", 36, "Singlethread", "Multithread")
# abs_time_pack("Random Quantum Circuit", "Double", 36, "Singlethread", "Multithread")

def comp_time_pack(task_1, task_2, pr, N_end, cc_1, cc_2):

    if task_1 == "Heisenberg dynamics":
        task_1 = "hdyn"
    elif task_1 == "Random Quantum Circuit":
        task_1 = "rqc"
    elif task_1 == "Quantum Fourier Transform":
        task_1 = "qft"

    if task_2 == "Heisenberg dynamics":
        task_2 = "hdyn"
    elif task_2 == "Random Quantum Circuit":
        task_2 = "rqc"
    elif task_2 == "Quantum Fourier Transform":
        task_2 = "qft"

    if cc_1 == "Singlethread":
        cc_1 = 'singlethread'
    elif cc_1 == "Multithread":
        cc_1 = 'multithread'
    elif cc_1 == "GPU":
        cc_1 = 'gpu'

    if cc_2 == "Singlethread":
        cc_2 = 'singlethread'
    elif cc_2 == "Multithread":
        cc_2 = 'multithread'
    elif cc_2 == "GPU":
        cc_2 = 'gpu'

    if pr == "Single":
        pr = "sp"
    elif pr == "Double":
        pr = "dp"

    fig, ax = plt.subplots()


    dir = os.getcwd()

    if task_1 == 'hdyn' or task_1 == 'qft':
        N_arr_1 = np.arange(6, N_end, 2)
    elif task_1 == 'rqc':
        N_arr_1 = np.arange(12, N_end, 2)

    if task_2 == 'hdyn' or task_2 == 'qft':
        N_arr_2 = np.arange(6, N_end, 2)
    elif task_2 == 'rqc':
        N_arr_2 = np.arange(12, N_end, 2)

    data_mat_1 = np.matrix(_build_data_mat(task_1, cc_1, cc_2, pr, N_arr_1))
    data_mat_2 = np.matrix(_build_data_mat(task_2, cc_1, cc_2, pr, N_arr_2))

    if N_arr_1[0] > N_arr_2[0]:
        data_mat_2 = data_mat_2[:,3:]

    elif N_arr_1[0] < N_arr_2[0]:
        data_mat_1 = data_mat_1[:,3:]

    # print(data_mat_1.shape)
    # print(data_mat_2.shape)

    # plt.imshow(data_mat_1, cmap='OrRd')#, vmin=-16, vmax=0)
    # plt.show()
    # plt.imshow(data_mat_2, cmap='OrRd')#, vmin=-16, vmax=0)
    # plt.show()

    comp_data_mat = np.zeros(data_mat_1.shape)

    for ri in range(comp_data_mat.shape[0]):
        for ci in range(comp_data_mat.shape[1]):
            comp_data_mat[ri, ci] = data_mat_1[ri, ci]/data_mat_2[ri, ci]

    # comp_data_mat = np.matrix(data_mat_1) - np.matrix(data_mat_2)

    # params = {'figure.figsize': (10, 10)}
    # plt.rcParams.update(params)

    # plt.imshow(comp_data_mat, cmap='Spectral')#, vmin=-16, vmax=0)
    plt.imshow(comp_data_mat, cmap='gist_heat_r', vmin=-0.5)

    plt.yticks(range(len(pkg_str)), package_str)
    locs, labels = plt.yticks()

    # plt.setp(labels, rotation=90)
    if N_arr_1[0] > N_arr_2[0]:
        plt.xticks(range(len(N_arr_1)), N_arr_1)
    elif N_arr_1[0] < N_arr_2[0]:
        plt.xticks(range(len(N_arr_2)), N_arr_2)
    else:
        plt.xticks(range(len(N_arr_1)), N_arr_1)
    # locs, labels = plt.xticks()

    ax.xaxis.set_major_locator(ticker.AutoLocator())
    ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())

    plt.colorbar()
    plt.tight_layout()
    # plt.savefig(fn)
    plt.show()

# comp_time_pack("Heisenberg dynamics", "Random Quantum Circuit", "Double", 36, "Singlethread", "Multithread")