amitkayal commited on
Commit
babbaf9
·
1 Parent(s): a0b8e55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -88,7 +88,8 @@ demo = gr.Interface(
88
  inputs=[
89
  gr.Radio(["Yes", "No"], label="View GradCAM images?"),
90
  gr.Number(label="Number of GradCAM images to view", default=5, max=10),
91
- gr.Textbox(label="Layer name for GradCAM visualization", default="layer4", lines=1),
 
92
  gr.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.5, label="Opacity"),
93
  gr.Radio(["Yes", "No"], label="View misclassified images?"),
94
  gr.Number(label="Number of misclassified images to view", default=5, min=1, max=10),
@@ -96,7 +97,7 @@ demo = gr.Interface(
96
  gr.Button(label="Submit", type="boolean"),
97
  # gr.Image(shape=(32, 32), label="Input Image"),
98
  # gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
99
- gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
100
 
101
  ],
102
  outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
@@ -107,7 +108,7 @@ demo = gr.Interface(
107
  # Callback function for the Gradio interface
108
  def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
109
  view_misclassified, num_misclassified_images,
110
- input_img,submit,layer_name):
111
  confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
112
  visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
113
  return confidence, visualization
 
88
  inputs=[
89
  gr.Radio(["Yes", "No"], label="View GradCAM images?"),
90
  gr.Number(label="Number of GradCAM images to view", default=5, max=10),
91
+ # gr.Textbox(label="Layer name for GradCAM visualization", default="layer4", lines=1),
92
+ gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
93
  gr.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.5, label="Opacity"),
94
  gr.Radio(["Yes", "No"], label="View misclassified images?"),
95
  gr.Number(label="Number of misclassified images to view", default=5, min=1, max=10),
 
97
  gr.Button(label="Submit", type="boolean"),
98
  # gr.Image(shape=(32, 32), label="Input Image"),
99
  # gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
100
+
101
 
102
  ],
103
  outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
 
108
  # Callback function for the Gradio interface
109
  def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
110
  view_misclassified, num_misclassified_images,
111
+ input_img,submit):
112
  confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
113
  visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
114
  return confidence, visualization