amitkayal commited on
Commit
bc0c135
·
1 Parent(s): bd5ff85

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -78,7 +78,8 @@ def inference_visualization(input_img, transparency = 0.5, target_layer_number =
78
  # def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
79
  # view_misclassified, num_misclassified_images,
80
  # input_img,submit):
81
- def gradio_callback(view_grad_cam, input_img, transparency = 0.5, target_layer_number = -1):
 
82
 
83
  confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
84
  visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
@@ -87,7 +88,7 @@ def gradio_callback(view_grad_cam, input_img, transparency = 0.5, target_layer_n
87
 
88
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
89
  description = "Gradio interface to infer on ResNet18 model, and get GradCAM results"
90
- examples = [["Yes","cat.jpg", 0.5, -1], ["Yes","dog.jpg", 0.5, -1]]
91
 
92
  demo = gr.Interface(
93
  # inference,
@@ -110,6 +111,9 @@ demo = gr.Interface(
110
  # gr.Image(shape=(32, 32), label="Input Image")
111
  # gr.Radio(["Yes", "No"], label="View GradCAM images?"),
112
  gr.Radio(["Yes", "No"], label="Location", info="GradCAM images?"),
 
 
 
113
  gr.Image(shape=(32, 32), label="Input Image"),
114
  gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
115
  gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
 
78
  # def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
79
  # view_misclassified, num_misclassified_images,
80
  # input_img,submit):
81
+ def gradio_callback(view_grad_cam, num_gradcam_images, view_misclassified, num_misclassified_images,
82
+ input_img, transparency = 0.5, target_layer_number = -1):
83
 
84
  confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
85
  visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
 
88
 
89
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
90
  description = "Gradio interface to infer on ResNet18 model, and get GradCAM results"
91
+ examples = [["Yes",5,"Yes",5,"cat.jpg", 0.5, -1], ["Yes",5,"Yes",5,"dog.jpg", 0.5, -1]]
92
 
93
  demo = gr.Interface(
94
  # inference,
 
111
  # gr.Image(shape=(32, 32), label="Input Image")
112
  # gr.Radio(["Yes", "No"], label="View GradCAM images?"),
113
  gr.Radio(["Yes", "No"], label="Location", info="GradCAM images?"),
114
+ gr.Number(label="Number of GradCAM images to view", default=5, max=10),
115
+ gr.Radio(["Yes", "No"], label="View misclassified images?"),
116
+ gr.Number(label="Number of misclassified images to view", default=5, min=1, max=10),
117
  gr.Image(shape=(32, 32), label="Input Image"),
118
  gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
119
  gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")