Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -75,9 +75,11 @@ def inference_visualization(input_img, transparency = 0.5, target_layer_number =
|
|
75 |
return visualization
|
76 |
|
77 |
# Callback function for the Gradio interface
|
78 |
-
def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
|
82 |
visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
|
83 |
return confidence, visualization
|
@@ -99,14 +101,17 @@ demo = gr.Interface(
|
|
99 |
# examples = examples,
|
100 |
fn=gradio_callback, # We'll add the function later after defining all functions, # We'll add the function later after defining all functions
|
101 |
inputs=[
|
102 |
-
gr.Radio(["Yes", "No"], label="View GradCAM images?"),
|
103 |
-
gr.Number(label="Number of GradCAM images to view", default=5, max=10),
|
104 |
-
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
|
105 |
-
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.5, label="Opacity"),
|
106 |
-
gr.Radio(["Yes", "No"], label="View misclassified images?"),
|
107 |
-
gr.Number(label="Number of misclassified images to view", default=5, min=1, max=10),
|
108 |
-
gr.Image(shape=(32, 32), label="Input Image")
|
109 |
-
|
|
|
|
|
|
|
110 |
],
|
111 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
|
112 |
examples = examples,
|
|
|
75 |
return visualization
|
76 |
|
77 |
# Callback function for the Gradio interface
|
78 |
+
# def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
|
79 |
+
# view_misclassified, num_misclassified_images,
|
80 |
+
# input_img,submit):
|
81 |
+
def gradio_callback(input_img, transparency = 0.5, target_layer_number = -1):
|
82 |
+
|
83 |
confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
|
84 |
visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
|
85 |
return confidence, visualization
|
|
|
101 |
# examples = examples,
|
102 |
fn=gradio_callback, # We'll add the function later after defining all functions, # We'll add the function later after defining all functions
|
103 |
inputs=[
|
104 |
+
# gr.Radio(["Yes", "No"], label="View GradCAM images?"),
|
105 |
+
# gr.Number(label="Number of GradCAM images to view", default=5, max=10),
|
106 |
+
# gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
|
107 |
+
# gr.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.5, label="Opacity"),
|
108 |
+
# gr.Radio(["Yes", "No"], label="View misclassified images?"),
|
109 |
+
# gr.Number(label="Number of misclassified images to view", default=5, min=1, max=10),
|
110 |
+
# gr.Image(shape=(32, 32), label="Input Image")
|
111 |
+
gr.Image(shape=(32, 32), label="Input Image"),
|
112 |
+
gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
|
113 |
+
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
114 |
+
|
115 |
],
|
116 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
|
117 |
examples = examples,
|