finalProject2 / app.py
amjadfqs's picture
Update app.py
159dc7c verified
import gradio as gr
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
import torch
from PIL import Image
# Load the model and feature extractor once during initialization
model_name = "amjadfqs/finalProject"
model = AutoModelForImageClassification.from_pretrained(model_name)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
def predict(image):
# Preprocess the image
inputs = feature_extractor(images=image, return_tensors="pt")
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Calculate the confidence values
softmax = torch.nn.functional.softmax(logits, dim=1)
confidences = softmax.squeeze().tolist()
# Get the predicted class
predicted_class_index = logits.argmax(-1).item()
class_names = ["glioma", "meningioma", "notumor", "pituitary"]
predicted_class = class_names[predicted_class_index]
# Create a dictionary to return both the predicted class and the confidence values
result = {
"predicted_class": predicted_class,
"confidences": {class_names[i]: confidences[i] for i in range(len(class_names))}
}
return result
# Set up the Gradio interface
image_cp = gr.Image(type="pil", label='Brain')
interface = gr.Interface(fn=predict, inputs=image_cp, outputs="json")
interface.launch()