Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
from PIL import Image
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
if response.status_code == 200:
|
10 |
-
# Assume the model is an image processing model
|
11 |
-
return lambda image: image # Replace with actual model processing code
|
12 |
-
else:
|
13 |
-
raise ValueError("Model not found")
|
14 |
-
|
15 |
-
# Load the model once during initialization
|
16 |
-
model = load_model("amjadfqs/finalProject")
|
17 |
|
18 |
def predict(image):
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Set up the Gradio interface
|
23 |
image_cp = gr.Image(type="pil", label='Brain')
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
3 |
+
import torch
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Load the model and feature extractor once during initialization
|
7 |
+
model_name = "amjadfqs/finalProject"
|
8 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
9 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def predict(image):
|
12 |
+
# Preprocess the image
|
13 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
14 |
+
# Make prediction
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model(**inputs)
|
17 |
+
logits = outputs.logits
|
18 |
+
# Get the predicted class
|
19 |
+
predicted_class = logits.argmax(-1).item()
|
20 |
+
# You may need to adjust the following line based on your class labels
|
21 |
+
class_names = ["class1", "class2", "class3", "class4"]
|
22 |
+
return predicted_class
|
23 |
|
24 |
# Set up the Gradio interface
|
25 |
image_cp = gr.Image(type="pil", label='Brain')
|