amkj84 commited on
Commit
ab34178
·
verified ·
1 Parent(s): 0fc1986

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -21
app.py CHANGED
@@ -1,4 +1,3 @@
1
- # Import libraries
2
  import os
3
  import gradio as gr
4
  from groq import Groq
@@ -6,34 +5,60 @@ from groq import Groq
6
  # Set up Groq API client (ensure GROQ_API_KEY is set in your environment or as a Hugging Face secret for deployment)
7
  client = Groq(api_key=os.getenv("apikey"))
8
 
9
-
10
  # Function to interact with the LLM using Groq's API
11
- def chatbot(user_input):
12
  try:
 
 
 
13
  # Send user input to the LLM and get a response
14
  chat_completion = client.chat.completions.create(
15
- messages=[
16
- {
17
- "role": "user",
18
- "content": user_input,
19
- }
20
- ],
21
  model="llama3-8b-8192", # Replace with the desired model
22
  )
23
  response = chat_completion.choices[0].message.content
24
- return response
 
25
  except Exception as e:
26
- # Handle errors gracefully
27
- return f"An error occurred: {str(e)}"
28
-
29
- # Create a Gradio interface for real-time interaction
30
- iface = gr.Interface(
31
- fn=chatbot,
32
- inputs=gr.Textbox(label="Your Message", placeholder="Type a message here..."),
33
- outputs=gr.Textbox(label="Response"),
34
- title="Real-Time Text-to-Text Chatbot - by ATIF MEHMOOD",
35
- description="You can Chat with the LLM in real-time using Groq's API.",
36
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  # Launch the Gradio app
39
  iface.launch()
 
 
1
  import os
2
  import gradio as gr
3
  from groq import Groq
 
5
  # Set up Groq API client (ensure GROQ_API_KEY is set in your environment or as a Hugging Face secret for deployment)
6
  client = Groq(api_key=os.getenv("apikey"))
7
 
 
8
  # Function to interact with the LLM using Groq's API
9
+ def chatbot(messages):
10
  try:
11
+ # Extract the latest user message
12
+ user_input = messages[-1][0] if messages else ""
13
+
14
  # Send user input to the LLM and get a response
15
  chat_completion = client.chat.completions.create(
16
+ messages=[{"role": "user", "content": user_input}],
 
 
 
 
 
17
  model="llama3-8b-8192", # Replace with the desired model
18
  )
19
  response = chat_completion.choices[0].message.content
20
+ messages.append((user_input, response)) # Append user input and response to chat
21
+ return messages
22
  except Exception as e:
23
+ return messages + [(None, f"An error occurred: {str(e)}")]
24
+
25
+ # Function to reset the chat
26
+ def reset_chat():
27
+ return []
28
+
29
+ # Gradio interface with a chatbot component
30
+ with gr.Blocks(theme=gr.themes.Soft()) as iface:
31
+ gr.Markdown(
32
+ """
33
+ # Real-Time Text-to-Text Chatbot
34
+ **by ATIF MEHMOOD**
35
+
36
+ Chat with an advanced language model using Groq's API. Enjoy real-time interactions!
37
+ """
38
+ )
39
+
40
+ with gr.Row():
41
+ chatbot_ui = gr.Chatbot(label="Chat Interface").style(height=400)
42
+
43
+ with gr.Row():
44
+ user_input = gr.Textbox(
45
+ label="Type Your Message",
46
+ placeholder="Ask me something...",
47
+ lines=1,
48
+ interactive=True,
49
+ )
50
+ send_button = gr.Button("Send", variant="primary")
51
+ clear_button = gr.Button("Clear Chat")
52
+
53
+ with gr.Row():
54
+ gr.Examples(
55
+ examples=["Hello!", "Tell me a joke.", "What's the weather like?"],
56
+ inputs=user_input,
57
+ )
58
+
59
+ # Link components to functions
60
+ send_button.click(chatbot, inputs=[chatbot_ui], outputs=chatbot_ui)
61
+ clear_button.click(reset_chat, inputs=[], outputs=chatbot_ui)
62
 
63
  # Launch the Gradio app
64
  iface.launch()