Spaces:
Runtime error
Runtime error
File size: 1,583 Bytes
08eb2b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
import pandas as pd
import json
import numpy as np
#from fuzzywuzzy import fuzz
import pinecone
from sentence_transformers import SentenceTransformer
pinecone.init(api_key='f5112f8c-f27d-4af1-b427-0c0953c113b5', environment='asia-southeast1-gcp')
#model = SentenceTransformer('all-mpnet-base-v2',device='cpu')
loaded_model = SentenceTransformer(r"finetiuned_model")
def process_string(s):
return s.lower().replace('&', 'and')
index = pinecone.Index('ingradientsearch')
# Create a Streamlit app
def main():
st.set_page_config(page_title="Ingradients Matching App", page_icon=":smiley:", layout="wide")
st.title("Ingradients name matching App :smiley:")
st.header("Matches using embeddings (semantic search)")
st.write("Enter a ingradient name:")
st.write("e.g. Chicken")
input_string = st.text_input("")
input_string = process_string(input_string)
if st.button("Enter"):
st.write("Top 5 matches using semantic search:")
xq = model.encode([input_string]).tolist()
result = index.query(xq, top_k=5, includeMetadata=True)
Ingredient=[]
Group=[]
score=[]
for matches in result['matches']:
Ingredient.append(matches['metadata']['Ingredient'])
#Group.append(matches['metadata']['Group'])
score.append(matches['score'])
final_result= pd.DataFrame(list(zip(Ingredient, Group, score)),
columns =['Ingredient','score' ])
st.dataframe(final_result)
if __name__ == "__main__":
main() |