amoldwalunj commited on
Commit
c9c1394
·
1 Parent(s): 4da94a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -11,7 +11,7 @@ pinecone.init(api_key='f5112f8c-f27d-4af1-b427-0c0953c113b5', environment='asia-
11
 
12
  #model = SentenceTransformer('all-mpnet-base-v2',device='cpu')
13
 
14
- loaded_model = SentenceTransformer(r"finetiuned_model")
15
 
16
  def process_string(s):
17
  return s.lower().replace('&', 'and')
@@ -21,14 +21,18 @@ def process_string(s):
21
  index = pinecone.Index('ingradientsearch')
22
 
23
 
24
- # Create a Streamlit app
 
 
 
 
 
25
  def main():
26
- st.set_page_config(page_title="Ingradients Matching App", page_icon=":smiley:", layout="wide")
27
- st.title("Ingradients name matching App :smiley:")
28
 
29
-
30
  st.header("Matches using embeddings (semantic search)")
31
- st.write("Enter a ingradient name:")
32
  st.write("e.g. Chicken")
33
  input_string = st.text_input("")
34
 
@@ -37,18 +41,18 @@ def main():
37
  if st.button("Enter"):
38
  st.write("Top 5 matches using semantic search:")
39
 
 
40
  xq = loaded_model.encode([input_string]).tolist()
41
  result = index.query(xq, top_k=5, includeMetadata=True)
42
 
43
  Ingredient=[]
44
- Group=[]
45
  score=[]
46
  for matches in result['matches']:
47
  Ingredient.append(matches['metadata']['Ingredient'])
48
- #Group.append(matches['metadata']['Group'])
49
  score.append(matches['score'])
50
 
51
- final_result= pd.DataFrame(list(zip(Ingredient, Group, score)),
52
  columns =['Ingredient','score' ])
53
 
54
  st.dataframe(final_result)
 
11
 
12
  #model = SentenceTransformer('all-mpnet-base-v2',device='cpu')
13
 
14
+ #
15
 
16
  def process_string(s):
17
  return s.lower().replace('&', 'and')
 
21
  index = pinecone.Index('ingradientsearch')
22
 
23
 
24
+
25
+
26
+ @st.cache(allow_output_mutation=True)
27
+ def load_model():
28
+ return SentenceTransformer(r"finetiuned_model")
29
+
30
  def main():
31
+ st.set_page_config(page_title="Ingredients Matching App", page_icon=":smiley:", layout="wide")
32
+ st.title("Ingredients name matching App :smiley:")
33
 
 
34
  st.header("Matches using embeddings (semantic search)")
35
+ st.write("Enter an ingredient name:")
36
  st.write("e.g. Chicken")
37
  input_string = st.text_input("")
38
 
 
41
  if st.button("Enter"):
42
  st.write("Top 5 matches using semantic search:")
43
 
44
+ loaded_model = load_model() # Load the model using the cached function
45
  xq = loaded_model.encode([input_string]).tolist()
46
  result = index.query(xq, top_k=5, includeMetadata=True)
47
 
48
  Ingredient=[]
49
+ #Group=[]
50
  score=[]
51
  for matches in result['matches']:
52
  Ingredient.append(matches['metadata']['Ingredient'])
 
53
  score.append(matches['score'])
54
 
55
+ final_result= pd.DataFrame(list(zip(Ingredient, score)),
56
  columns =['Ingredient','score' ])
57
 
58
  st.dataframe(final_result)