Spaces:
Runtime error
Runtime error
File size: 73,364 Bytes
b9fb5ed e6ec063 b9fb5ed 7e259dd b9fb5ed f4c3ccc 2c0aa17 b9fb5ed b1db9a8 b9fb5ed 39fe2fe b9fb5ed 39fe2fe b1db9a8 e6ec063 b9fb5ed 646529f b9fb5ed e6ec063 55e9fec b9fb5ed e435cc9 b9fb5ed 39a61e0 b9fb5ed 39a61e0 b9fb5ed e6ec063 55e9fec b9fb5ed e435cc9 b9fb5ed e6ec063 55e9fec b9fb5ed 19ae87d 81c3ec6 19ae87d 81c3ec6 19ae87d b9fb5ed e435cc9 b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed 19ae87d b9fb5ed e6ec063 55e9fec b9fb5ed e435cc9 b9fb5ed 19ae87d 81c3ec6 19ae87d e435cc9 19ae87d f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 9300e58 f4c3ccc 308e897 f4c3ccc e435cc9 f4c3ccc f9fa95c f4c3ccc 261eac8 f4c3ccc 535fc27 9300e58 b8b8d2d e435cc9 b8b8d2d e54b188 b8b8d2d e435cc9 b8b8d2d 66a2be0 538b8f0 66a2be0 538b8f0 308e897 538b8f0 66a2be0 e435cc9 66a2be0 538b8f0 66a2be0 538b8f0 66a2be0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 |
import streamlit as st
import re
import gspread
from gspread_dataframe import get_as_dataframe, set_with_dataframe
import pandas as pd
import os
import openai
import time
import json
os.environ["api_key"] == st.secrets["api_key"]
#os.environ["OPENAI_API_KEY"] = api_key
openai.api_key = os.getenv("api_key")
os.environ["GSPREAD_CREDENTIALS"]= st.secrets["GSPREAD_CREDENTIALS"]
#print(type(os.environ["GSPREAD_CREDENTIALS"]))
#print(st.secrets["GSPREAD_CREDENTIALS"], "GSPREAD_CREDENTIALS")
json_credentials= st.secrets["GSPREAD_CREDENTIALS"]
# Parse the JSON content (string) into a Python dictionary
credentials_dict = json.loads(json_credentials)
# Initialize session state
if 'df_final_output' not in st.session_state:
st.session_state['df_final_output'] = None
# def get_chatgpt_response(messages):
# response = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# messages=messages
# )
# return response['choices'][0]['message']['content']
def get_chatgpt_response(messages, selected_model):
response = openai.ChatCompletion.create(
model=selected_model,
messages=messages
)
return response['choices'][0]['message']['content']
# Define pages in sidebar
page = st.sidebar.radio('Select a page:', ('Review Analysis', 'review summary', 'Feature Benefits','combined features and benefits', 'feature_mapping', 'benefit_mapping', 'Identify Avatars', 'Tone of Voice Manual', 'question_answers'))
if page == 'Review Analysis':
st.title('Review Analysis Page')
# Streamlit settings
#st.title('Customer Reviews Analysis')
# Authenticate Google Sheets API
#gc = gspread.service_account(filename='arctic-rite-381810-e8bee8664772.json')
# Authenticate Google Sheets API using the dictionary
gc = gspread.service_account_from_dict(credentials_dict)
# Ask user for Google Sheet URL
sheet_url = st.text_input('Enter the URL of your Google Sheet')
# Add this in the part of your Streamlit app where the user can select the model
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
user_char_limit = st.number_input("Enter character limit for chunk:", value=9000, step=500)
# User input for prompts
phase1_prompt = st.text_area("Enter your prompt for Phase 1- wherever you see '{}', we are passing reviews at that place", value="Analyze a set of customer reviews and identify the unique pros and cons and their themes mentioned by customers. for each pros and cons also mention unique theme associated for that pro/cons. Your response should have format like this.\n\nPros:\n\n1. Theme1 (please replace theme identified here): explanaition\n2. Theme2 (please replace theme identified here): explaination\n\ncons:\n1. Theme1: explanaition\n2. Theme2: explaination\n\nIn your analysis, consider the language and tone used in the reviews to accurately represent the customer's experience. here are the reviews\n {}")
phase2_prompt = st.text_area("Enter your prompt for Phase 2- wherever you see '{}', we are passing reviews at that place", value="Analyze a set of customer reviews pros/cons and identify the only unique pros and cons and their themes mentioned by customers. for each pros and cons also mention unique theme associated for that pro/cons. Your response should have format like this.\n\nPros:\n\n1. Theme1 (please replace theme identified here): explanaition\n2. Theme2 (please replace theme identified here): explaination\n\ncons:\n1. Theme1: explanaition\n2. Theme2: explaination\n\nIn your analysis, consider the language and tone used in the reviews to accurately represent the customer's experience. here are the reviews\n {}")
final_prompt = st.text_area("Enter your final prompt", value="please analyze below reviews and give me unique best 20(twenty) pros and cons mentioned. Your response should be in same format in 2 sections. one for pros and other for cons. e.g. Pros:\n1. Quality: explaination, 2. 2nd theme: explaination. \n\n {}\n\nPlease note, response should have 2 sections, one for pros and one for cons. All the unique pros should be in pros section and same should be done for cons. Response format: Pros:\n1. Quality: explaination, 2. 2nd theme: explaination. Make sure your response is long and cover all points (at least top 20 pros and cons)")
# If the user has input a URL, fetch the data from Google Sheets
if st.button('generate'):
#if sheet_url:
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
#st.session_state['sheet'] = sheet
# Select sheet named 'Reviews'
worksheet = sheet.worksheet('Reviews')
# Get all records of the data
df = get_as_dataframe(worksheet)
# Convert dataframe to list and drop NaNs
df['Body']= df['Body'].astype(str)
# drop rows where 'Body' column has NaN
df = df.dropna(subset=['Body'])
####first chunking
char_limit= user_char_limit
separator = '\n'
char_limit = 9000
top_reviews = []
start_index = 0
chunk_count = 1
while start_index < len(df):
char_count = 0
end_index = start_index
# Get the reviews within the character limit
while end_index < len(df) and char_count + len(df['Body'][end_index]) <= char_limit:
char_count += len(df['Body'][end_index])
end_index += 1
chunk_reviews = df['Body'][start_index:end_index]
reviews_string = separator.join(chunk_reviews)
num_reviews = len(chunk_reviews)
print(f'Chunk {chunk_count}:')
print(f'Number of reviews: {num_reviews}')
print(f'Character length: {len(reviews_string)}')
# For the first phase, replace the hardcoded prompt with the user's input
messages = [
{"role": "system", "content": "You are helpful assistant"},
{"role": "user", "content": phase1_prompt.format(reviews_string)}
]
model_response = get_chatgpt_response(messages, selected_model)
top_reviews.append(model_response)
start_index = end_index
chunk_count += 1
# After the first chunking phase, you create reviews_string_1
separator = "\n" + "-" * 80 + "\n"
reviews_string_1 = separator.join(top_reviews)
print(len(reviews_string_1))
# Now, we start a loop to repeatedly perform the second chunking phase
while len(reviews_string_1) > 11000:
dfn= pd.DataFrame(top_reviews, columns=['pros/cons']) #convert top_reviews in df
separator = '\n'
char_limit = 9000
top_reviews = []
start_index = 0
chunk_count = 1
while start_index < len(dfn):
char_count = 0
end_index = start_index
# Get the reviews within the character limit
while end_index < len(dfn) and char_count + len(dfn['pros/cons'][end_index]) <= char_limit:
char_count += len(dfn['pros/cons'][end_index])
end_index += 1
chunk_reviews = dfn['pros/cons'][start_index:end_index]
reviews_string = separator.join(chunk_reviews)
num_reviews = len(chunk_reviews)
print(f'Chunk {chunk_count}:')
print(f'Number of reviews: {num_reviews}')
print(f'Character length: {len(reviews_string)}')
# For the second phase, replace the hardcoded prompt with the user's input
messages = [
{"role": "system", "content": "You are helpful assistant"},
{"role": "user", "content": phase2_prompt.format(reviews_string)}
]
try:
model_response = get_chatgpt_response(messages, selected_model)
top_reviews.append(model_response)
except Exception as e:
if e.__class__ =="RateLimitError":
print("here")
time.sleep(30)
model_response = get_chatgpt_response(messages, selected_model)
start_index = end_index
chunk_count += 1
# After the second chunking phase, you again create reviews_string_1
separator = "\n" + "-" * 80 + "\n"
reviews_string_1 = separator.join(top_reviews)
# [...]
# The code continues as is until the final message
# For the final message, replace the hardcoded prompt with the user's input
messages = [
{"role": "system", "content": "You are helpful assistant who analyzes reviews and gives top 20 pros and cons from them"},
{"role": "user", "content": final_prompt.format(reviews_string_1)}
]
final_output = get_chatgpt_response(messages, selected_model)
# Display the output
st.text('Here are the top pros and cons:')
st.write(final_output)
st.session_state.df_final_output = final_output
# Create a button that will trigger writing to Google Sheets
if st.button('Write output to sheet'):
#if st.button('Write output to sheet'):
#st.session_state.df_final_output = final_output
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
final_output= st.session_state.df_final_output
st.write("Button clicked, processing data...")
lines = final_output.split('\n')
# Split each line into theme and description
split_lines = []
for line in lines:
if "Pros:" in line:
type_ = "Pros"
elif "Cons:" in line:
type_ = "Cons"
elif ": " in line:
theme, description = re.split(r': ', line, 1)
split_lines.append([type_, theme, description])
# Convert the list of lists into a DataFrame
df_final_output = pd.DataFrame(split_lines, columns=['Type', 'Theme', 'Description'])
st.write(df_final_output)
# Create a new worksheet and write the final output to it
# worksheet_output = sheet.add_worksheet(title="top_pros_cons", rows="100", cols="20")
# set_with_dataframe(worksheet_output, df_final_output)
# # Then, outside of your if statement for the button click, check if df_final_output exists in the session state
# if st.session_state.df_final_output is not None:
try:
worksheet_output = sheet.add_worksheet(title="top_pros_cons", rows="100", cols="20")
set_with_dataframe(worksheet_output, df_final_output)
st.write("Data written successfully to Google Sheets.")
except Exception as e:
st.error(f"An error occurred while writing to Google Sheets: {e}")
# # Wrap your button in a form
# with st.form(key='output_form'):
# # Change your button click event to set a session state variable
# if st.form_submit_button('Write output to sheet'):
# # Rest of the code to populate df_final_output
# st.session_state.df_final_output = df_final_output
# # Then, outside of your form, check if df_final_output exists in the session state
# if st.session_state.df_final_output is not None:
# try:
# worksheet_output = sheet.add_worksheet(title="top_pros_cons", rows="100", cols="20")
# set_with_dataframe(worksheet_output, st.session_state.df_final_output)
# st.write("Data written successfully to Google Sheets.")
# except Exception as e:
# st.error(f"An error occurred while writing to Google Sheets: {e}")
if page == 'Feature Benefits':
st.title('Feature Benefits Page')
# Authenticate Google Sheets API
#gc = gspread.service_account(filename='arctic-rite-381810-e8bee8664772.json')
gc = gspread.service_account_from_dict(credentials_dict)
# Ask user for Google Sheet URL
sheet_url = st.text_input('Enter the URL of your Google Sheet')
# # Display default prompt to user
# default_prompt = """Using below information of the listing, please extract the top 30 Features and Benefits:
# Title: {}\n
# bullet_str: {}\n
# Legacy Product Description: {}\n
# A+ Description: {}\n
# Image_text: {}\n
# backend_search_terms: {}\n
# Please note, you need to create comprehensive top 30 Features and top 30 Benefits for listing using this information. Your response should have 2 sections. one for features and other for benefits
# """.format(title, bullet_str, legacy_desc, a_plus_desc, image_text_string, backend_search_terms)
# prompt = st.text_area("Edit the prompt:", value=default_prompt, height=200)
# Add this in the part of your Streamlit app where the user can select the model
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Select sheet named 'Listing'
worksheet = sheet.worksheet('Listing')
# Get all records of the data
df = get_as_dataframe(worksheet)
# Convert DataFrame to strings
df_str = df.astype(str)
title = df[df.eq('Title').any(axis=1)].iloc[0, 2]
bullets = [df[df.eq(f"Bullet #{i}").any(axis=1)].iloc[0, 2] for i in range(1, 6)]
backend_search_terms = df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)]) > 0 else None
image_text_row = df[df.eq('Image Text').any(axis=1)]
image_text = list(image_text_row.dropna(axis=1).iloc[0, :])
a_plus_desc_mask = df.astype(str).apply(lambda x: 'A+ Description' in ' '.join(x), axis=1)
if a_plus_desc_mask.any():
a_plus_desc_row = df[a_plus_desc_mask].index[0]
a_plus_desc = df.iloc[a_plus_desc_row:, :].fillna('').values.flatten()
a_plus_desc = ' '.join(a_plus_desc).strip()
else:
a_plus_desc = None
legacy_desc = df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)]) > 0 else None
image_text_string = ' '.join(image_text)
bullet_str = ""
for i, bullet in enumerate(bullets, 1):
bullet_str += f"Bullet #{i}: {bullet}\n"
# Display default prompt to user
default_prompt = """Using below information of the listing, please extract the top 30 Features and Benefits:
------------------------------------
Title: {}\n
bullet_str: {}\n
Legacy Product Description: {}\n
A+ Description: {}\n
Image_text: {}\n
backend_search_terms: {}\n
-------------------------------------
Please note, you need to create comprehensive top 30 Features and top 30 Benefits for listing using this information. Your response should have 2 sections, one for features and other for benefits
""".format(title, bullet_str, legacy_desc, a_plus_desc, image_text_string, backend_search_terms)
prompt = st.text_area("Edit the prompt:", value=default_prompt, height=200)
#st.write(prompt)
if st.button('generate'):
#st.write(prompt)
messages = [
{"role": "system", "content": "You are helpful assistant who help create features and benefits for amazon listings"},
{"role": "user", "content": prompt}
]
# messages = [
# {"role": "system", "content": "You are helpful assistant who help create features and benefits for amazon listings"},
# {"role": "user", "content": """Using below information of the listing, please extract the top 30 Features and Benefits:
# Title: {}\n
# bullet_str: {}\n
# Legacy Product Description: {}\n
# A+ Description: {}\n
# Image_text: {}\n
# backend_search_terms: {}\n
# Please note, you need to create comprehensive top 30 Features and top 30 Benefits for listing using this information. Your response should have 2 sections. one for features and other for benefits
# """.format(title, bullet_str, legacy_desc, a_plus_desc,image_text_string, backend_search_terms)}
# ]
model_response = get_chatgpt_response(messages, selected_model)
#st.write(model_response)
# messages = [
# {"role": "system", "content": "You are helpful assistant who help create features and benefits for amazon listings"},
# {"role": "user", "content": prompt}
# ]
messages1 = [
{"role": "system", "content": "You are helpful assistant who help create features and benefits for amazon listings"},
{"role": "user", "content": """{}
Please re-write above features and benefits in same way in 2 sections.You need to add short heading/theme of 1-3 words for each feature benefit.
Your response should have 2 sections. one for features and other for benefits
e.g features: 1. 100% cotton (this is theme that you will add if not available): 100% cotton cold press paper ensures exceptional quality and strength (this is exisitng description) 2. .....
Benefits:
1.Superior Watercolor Surface (this is theme that you will add if not available): Provides a high-quality surface for watercolor painting, with a unique texture that allows for even spreading and vivid colors.(this is exisitng description) 2. ...
please note, you should not miss any feature benefits. all 30 should be covered with short heading.""".format(model_response)}
]
final_model_response = get_chatgpt_response(messages1, selected_model)
feature_benefits=final_model_response
# Display the output
# Display the output
st.text('Here are the top features and benefits:')
st.write(feature_benefits)
# Store the result in the session state
st.session_state.feature_benefits = feature_benefits
# Create a button that will trigger writing to Google Sheets
if st.button('Write features and benefits to sheet'):
sheet_id = sheet_url.split('/')[5] # Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Retrieve the result from the session state
feature_benefits = st.session_state.feature_benefits
st.write("Button clicked, processing data...")
lines = feature_benefits.split('\n')
# # Split each line into feature/benefit and description
# split_lines = []
# for line in lines:
# if "Features:" in line:
# type_ = "Features"
# elif "Benefits:" in line:
# type_ = "Benefits"
# elif ": " in line:
# theme, description = re.split(r': ', line, 1)
# split_lines.append([type_, theme, description])
# # Convert the list of lists into a DataFrame
# df_feature_benefits = pd.DataFrame(split_lines, columns=['Type', 'Theme', 'Description'])
# Split each line into feature/benefit and description
# Split each line into feature/benefit and description
split_lines = []
for line in lines:
if "Features:" in line:
type_ = "Features"
elif "Benefits:" in line:
type_ = "Benefits"
elif line.strip() == '':
continue # skip empty lines
else:
if ": " in line: # If theme is present
theme, description = re.split(r': ', line, 1)
else: # If theme is not present
theme = ''
description = line.strip()
split_lines.append([type_, theme, description])
# Convert the list of lists into a DataFrame
df_feature_benefits = pd.DataFrame(split_lines, columns=['Type', 'Theme', 'Description'])
st.write(df_feature_benefits)
# Create a new worksheet and write the final output to it
try:
worksheet_output = sheet.add_worksheet(title="top_features_benefits", rows="100", cols="20")
set_with_dataframe(worksheet_output, df_feature_benefits)
st.write("Data written successfully to Google Sheets.")
except Exception as e:
st.error(f"An error occurred while writing to Google Sheets: {e}")
if page == 'Identify Avatars':
st.title('Identify Avatars Page')
# Authenticate Google Sheets API
# gc = gspread.service_account(filename='arctic-rite-381810-e8bee8664772.json')
gc = gspread.service_account_from_dict(credentials_dict)
# st.title('Identify Avatars Page')
# # Authenticate Google Sheets API
# gc = gspread.service_account(filename='arctic-rite-381810-e8bee8664772.json')
# Ask user for Google Sheet URL
sheet_url = st.text_input('Enter the URL of your Google Sheet')
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Add this in the part of your Streamlit app where the user can select the model
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
# Let user choose between pros/cons and reviews
user_choice = st.selectbox("Select input for avatars:", ('review summary', 'Reviews'))
if user_choice == 'review summary':
worksheet = sheet.worksheet('reviews summary')
# Get all records of the data
df = get_as_dataframe(worksheet)
# Select only the 'Body' column and drop rows with NaN values
body_series = df['reviews summary'].dropna()
#### first chunking
separator = '\n\n'
pros_and_cons = separator.join(body_series)
# Clean up data
reviews_ = body_series.str.cat(sep='\n\n')
st.session_state.reviews_ = reviews_
elif user_choice == 'Reviews':
worksheet = sheet.worksheet('Reviews')
# Get all records of the data
df = get_as_dataframe(worksheet)
# Select only the 'Body' column and drop rows with NaN values
body_series = df['Body'].dropna()
#### first chunking
separator = '\n\n'
pros_and_cons = separator.join(body_series)
# Clean up data
reviews_ = body_series.str.cat(sep='\n\n')
st.session_state.reviews_ = reviews_
# Prepare the prompt
prompt = """Below are the customer reviews/ review summary for our product:
-----------------------------------------------
{}
-----------------------------------------------
You need to use above information and Write a list of the top 5 Avatars (persona) that you identify from the product reviews of the listing.
For each avatar pls specify the following:
- Name
- Gender
- Age range
- Income range
- Demographics
- General description of the avatar
- Personality Traits
- Interests and Hobbies
- Pains (Psychological, Spiritual, Physical)
- Top 10 insecurities
- Top 10 books that they read with title and author
- Top 5 movies
- Top 5 TV shows
- List their top 10 desires
- List the social media they use and channels they follow
- List top 10 lead magnets used for marketing purpose
And anything else can be used for sales and marketing purpose to target those specific avatars. Please make sure you provide long info for each of the point you mention in avatar""".format(reviews_)
# Editable prompt
prompt = st.text_area("Edit the prompt:", value=prompt, height=200)
if st.button('Generate avatars'):
#formatted_prompt = user_edited_prompt.format(reviews=reviews_)
messages = [
{"role": "system", "content": "You are a helpful assistant who helps identify avatars from product reviews"},
{"role": "user", "content": prompt}
]
# Get model response
model_response = get_chatgpt_response(messages, selected_model)
# Display the output
st.text('Here are the top 5 Avatars:')
st.write(model_response)
# Store the result in the session state
st.session_state.avatars = model_response
# Create a button that will trigger writing to Google Sheets
if st.button('Write avatars to sheet'):
sheet_id = sheet_url.split('/')[5] # Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Retrieve the result from the session state
avatars = st.session_state.avatars
st.write("Button clicked, processing data...")
# Create a new worksheet and write the final output to it
try:
# Create a new worksheet named "avatars"
worksheet_output = sheet.add_worksheet(title="avatars", rows="100", cols="20")
# Prepare a list to store the avatar information
avatars_data = [avatars]
# Convert the list of avatar data into a DataFrame
df_avatars = pd.DataFrame(avatars_data, columns=['Avatar Info'])
# Write the DataFrame to the new "avatars" worksheet
set_with_dataframe(worksheet_output, df_avatars)
st.write("Data written successfully to Google Sheets.")
except Exception as e:
st.error(f"An error occurred while writing to Google Sheets: {e}")
if page == 'Tone of Voice Manual':
st.title('Tone of Voice Manual Page')
# Authenticate Google Sheets API
#gc = gspread.service_account(filename='arctic-rite-381810-e8bee8664772.json')
gc = gspread.service_account_from_dict(credentials_dict)
# Ask user for Google Sheet URL
sheet_url = st.text_input('Enter the URL of your Google Sheet')
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Add this in the part of your Streamlit app where the user can select the model
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
# Add the prompt
prompt = """------------------------------------------------------------------------------------------------------
using reviews pros and cons we identified below avatar and related info of avatar for our amazon listing
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
Please generate a tone of voice manual to address the above Avatar.
can you also address below in tone of voice manual.
1. Make a list of all your communications channels
2. Highlight the tonal values that apply to each channel
3. Write best-practice tone of voice examples
Please make this manual very exhaustive and detailed. explain each of the point with long content
"""
# Editable prompt
prompt = st.text_area("Edit the prompt:", value=prompt, height=200)
if st.button('Generate Tone of Voice Manual'):
messages = [
{"role": "system", "content": "You are a helpful assistant who helps create a tone of voice manual for avatars"},
{"role": "user", "content": prompt}
]
# Get model response
model_response = get_chatgpt_response(messages, selected_model)
# Display the output
st.text('Generated Tone of Voice Manual:')
st.write(model_response)
# Store the result in the session state
st.session_state.tone_of_voice_manual = model_response
# Create a button that will trigger writing to Google Sheets
# if st.button('Write Tone of Voice Manual to sheet'):
# sheet_id = sheet_url.split('/')[5] # Open the Google spreadsheet
# sheet = gc.open_by_key(sheet_id)
# # Retrieve the result from the session state
# tone_of_voice_manual = st.session_state.tone_of_voice_manual
# st.write("Button clicked, processing data...")
# # Create a new worksheet and write the final output to it
# try:
# # Create a new worksheet named "tone_of_voice_manual"
# worksheet_output = sheet.add_worksheet(title="tone_of_voice_manual", rows="100", cols="20")
# # Prepare a list to store the tone of voice manual
# tone_of_voice_manual_data = [tone_of_voice_manual]
# # Convert the list of tone of voice manual data into a DataFrame
# df_tone_of_voice_manual = pd.DataFrame(tone_of_voice_manual_data, columns=['Tone of Voice Manual'])
# # Write the DataFrame to the new "tone_of_voice_manual" worksheet
# set_with_dataframe(worksheet_output, df_tone_of_voice_manual)
# st.write("Data written successfully to Google Sheets.")
# except Exception as e:
# st.error(f"An error occurred while writing to Google Sheets: {e}")
# Write Tone of Voice Manual to sheet
if st.button('Write Tone of Voice Manual to sheet'):
sheet_id = sheet_url.split('/')[5] # Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Retrieve the result from the session state
tone_of_voice_manual = st.session_state.tone_of_voice_manual
st.write("Button clicked, processing data...")
try:
# Check if the "tone_of_voice_manual" worksheet already exists
worksheet_output = None
for wks in sheet.worksheets():
if wks.title == 'tone_of_voice_manual':
worksheet_output = wks
break
# If the worksheet does not exist, create a new one
if worksheet_output is None:
worksheet_output = sheet.add_worksheet(title="tone_of_voice_manual", rows="100", cols="20")
# Read the existing data from the worksheet
existing_data = get_as_dataframe(worksheet_output)
# Remove empty columns from the existing data
existing_data = existing_data.dropna(how='all', axis=1)
# Prepare a list to store the tone of voice manual data
tone_of_voice_manual_data = [tone_of_voice_manual]
# Convert the list of tone of voice manual data into a DataFrame
new_data = pd.DataFrame(tone_of_voice_manual_data, columns=['Tone of Voice Manual'])
# Append the new data to the existing data
updated_data = pd.concat([existing_data, new_data], axis=1)
# Clear the worksheet before writing the updated data
worksheet_output.clear()
# Write the updated data to the "tone_of_voice_manual" worksheet
set_with_dataframe(worksheet_output, updated_data)
st.write("Data written successfully to Google Sheets.")
except Exception as e:
st.error(f"An error occurred while writing to Google Sheets: {e}")
if page == 'review summary':
st.title('Review summary Page')
gc = gspread.service_account_from_dict(credentials_dict)
# Ask user for Google Sheet URL
sheet_url = st.text_input('Enter the URL of your Google Sheet')
# Add this in the part of your Streamlit app where the user can select the model
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
# Set default prompts
phase1_prompt = "Analyze a set of customer reviews and create a summary of reviews. don't miss any point in your summary\n\n In your analysis, consider the language and tone used in the reviews to accurately represent the customer's experience. here are the reviews\n {}"
phase2_prompt = "Analyze a set of customer reviews summary and create a summary covering all points. don't create too small summary. it should be exhaustive. \n\n In your analysis, consider the language and tone used in the reviews to accurately represent the customer's experience. here are the review summary \n {}"
final_prompt = "please analyze below reviews summary and create final review summary in less than 2500 words. don't miss any point in your summary. \n\n In your analysis, consider the language and tone used in the reviews to accurately represent the customer's experience.\n {}"
editable_phase1_prompt = st.text_area("Edit the first prompt:", value=phase1_prompt, height=200)
user_char_limit = st.number_input("Enter character limit:", value=9000, step=500)
# If the user has input a URL, fetch the data from Google Sheets
if st.button('generate'):
#if sheet_url:
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
#st.session_state['sheet'] = sheet
# Select sheet named 'Reviews'
worksheet = sheet.worksheet('Reviews')
# Get all records of the data
df = get_as_dataframe(worksheet)
# Convert dataframe to list and drop NaNs
df['Body']= df['Body'].astype(str)
# drop rows where 'Body' column has NaN
df = df.dropna(subset=['Body'])
####first chunking
phase1_prompt = editable_phase1_prompt
char_limit = user_char_limit
separator = '\n'
#char_limit = 9000
top_reviews = []
start_index = 0
chunk_count = 1
while start_index < len(df):
char_count = 0
end_index = start_index
# Get the reviews within the character limit
while end_index < len(df) and char_count + len(df['Body'][end_index]) <= char_limit:
char_count += len(df['Body'][end_index])
end_index += 1
chunk_reviews = df['Body'][start_index:end_index]
reviews_string = separator.join(chunk_reviews)
num_reviews = len(chunk_reviews)
print(f'Chunk {chunk_count}:')
print(f'Number of reviews: {num_reviews}')
print(f'Character length: {len(reviews_string)}')
# For the first phase, replace the hardcoded prompt with the user's input
messages = [
{"role": "system", "content": "You are helpful assistant"},
{"role": "user", "content": phase1_prompt.format(reviews_string)}
]
model_response = get_chatgpt_response(messages, selected_model)
top_reviews.append(model_response)
start_index = end_index
chunk_count += 1
# After the first chunking phase, you create reviews_string_1
separator = "\n" + "-" * 80 + "\n"
reviews_string_1 = separator.join(top_reviews)
print(len(reviews_string_1))
if len(reviews_string_1) > 14000:
# Now, we start a loop to repeatedly perform the second chunking phase
while len(reviews_string_1) > 11000:
dfn= pd.DataFrame(top_reviews, columns=['pros/cons']) #convert top_reviews in df
separator = '\n'
char_limit = 9000
top_reviews = []
start_index = 0
chunk_count = 1
while start_index < len(dfn):
char_count = 0
end_index = start_index
# Get the reviews within the character limit
while end_index < len(dfn) and char_count + len(dfn['pros/cons'][end_index]) <= char_limit:
char_count += len(dfn['pros/cons'][end_index])
end_index += 1
chunk_reviews = dfn['pros/cons'][start_index:end_index]
reviews_string = separator.join(chunk_reviews)
num_reviews = len(chunk_reviews)
print(f'Chunk {chunk_count}:')
print(f'Number of reviews: {num_reviews}')
print(f'Character length: {len(reviews_string)}')
# For the second phase, replace the hardcoded prompt with the user's input
messages = [
{"role": "system", "content": "You are helpful assistant"},
{"role": "user", "content": phase2_prompt.format(reviews_string)}
]
try:
model_response = get_chatgpt_response(messages, selected_model)
top_reviews.append(model_response)
except Exception as e:
if e.__class__ =="RateLimitError":
print("here")
time.sleep(30)
model_response = get_chatgpt_response(messages, selected_model)
start_index = end_index
chunk_count += 1
# After the second chunking phase, you again create reviews_string_1
separator = "\n" + "-" * 80 + "\n"
reviews_string_1 = separator.join(top_reviews)
if len(reviews_string_1) > 14000:
# For the final message, replace the hardcoded prompt with the user's input
messages = [
{"role": "system", "content": "You are helpful assistant who analyzes reviews"},
{"role": "user", "content": final_prompt.format(reviews_string_1)}
]
final_output = get_chatgpt_response(messages, selected_model)
# Display the output
st.text('Here are the top pros and cons:')
st.markdown(final_output)
st.session_state.df_final_output = final_output
else:
final_output = reviews_string_1
st.markdown(final_output)
st.session_state.df_final_output = final_output
else:
final_output = reviews_string_1
print('we are here')
st.markdown(final_output)
st.session_state.df_final_output = final_output
# Create a button that will trigger writing to Google Sheets
if st.button('Write output to sheet'):
#if st.button('Write output to sheet'):
#st.session_state.df_final_output = final_output
# sheet_id = sheet_url.split('/')[5]
# # Open the Google spreadsheet
# sheet = gc.open_by_key(sheet_id)
final_output= st.session_state.df_final_output
st.write("Button clicked, processing data...")
sheet_id = sheet_url.split('/')[5] # Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
try:
# Check if the "tone_of_voice_manual" worksheet already exists
worksheet_output = None
for wks in sheet.worksheets():
if wks.title == 'reviews summary':
worksheet_output = wks
break
# If the worksheet does not exist, create a new one
if worksheet_output is None:
worksheet_output = sheet.add_worksheet(title="reviews summary", rows="100", cols="20")
# Read the existing data from the worksheet
existing_data = get_as_dataframe(worksheet_output)
# Remove empty columns from the existing data
existing_data = existing_data.dropna(how='all', axis=1)
# Prepare a list to store the tone of voice manual data
tone_of_voice_manual_data = [final_output]
# Convert the list of tone of voice manual data into a DataFrame
new_data = pd.DataFrame(tone_of_voice_manual_data, columns=['reviews summary'])
# Append the new data to the existing data
updated_data = pd.concat([existing_data, new_data], axis=1)
# Clear the worksheet before writing the updated data
worksheet_output.clear()
# Write the updated data to the "tone_of_voice_manual" worksheet
set_with_dataframe(worksheet_output, updated_data)
st.write("Data written successfully to Google Sheets.")
except Exception as e:
st.error(f"An error occurred while writing to Google Sheets: {e}")
# if page == 'question_answers':
# st.title('question answers')
# #gc = gspread.service_account(filename='arctic-rite-381810-e8bee8664772.json')
# gc = gspread.service_account_from_dict(credentials_dict)
# # Ask user for Google Sheet URL
# sheet_url = st.text_input('Enter the URL of your Google Sheet')
# # Add this in the part of your Streamlit app where the user can select the model
# models = ["gpt-3.5-turbo", "gpt-4"]
# selected_model = st.selectbox("Choose a model:", models)
# # Extract sheet ID from URL
# sheet_id = sheet_url.split('/')[5]
# # Open the Google spreadsheet
# sheet = gc.open_by_key(sheet_id)
# # Select sheet named 'Listing'
# worksheet = sheet.worksheet('Listing')
# # Get all records of the data
# df = get_as_dataframe(worksheet)
# # Convert DataFrame to strings
# df_str = df.astype(str)
# title = df[df.eq('Title').any(axis=1)].iloc[0, 2]
# bullets = [df[df.eq(f"Bullet #{i}").any(axis=1)].iloc[0, 2] for i in range(1, 6)]
# backend_search_terms = df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)]) > 0 else None
# image_text_row = df[df.eq('Image Text').any(axis=1)]
# image_text = list(image_text_row.dropna(axis=1).iloc[0, :])
# a_plus_desc_mask = df.astype(str).apply(lambda x: 'A+ Description' in ' '.join(x), axis=1)
# if a_plus_desc_mask.any():
# a_plus_desc_row = df[a_plus_desc_mask].index[0]
# a_plus_desc = df.iloc[a_plus_desc_row:, :].fillna('').values.flatten()
# a_plus_desc = ' '.join(a_plus_desc).strip()
# else:
# a_plus_desc = None
# legacy_desc = df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)]) > 0 else None
# image_text_string = ' '.join(image_text)
# bullet_str = ""
# for i, bullet in enumerate(bullets, 1):
# bullet_str += f"Bullet #{i}: {bullet}\n"
# # Display default prompt to user
# default_prompt = """Below is data of our products for amazon listing:
# ------------------------------------
# Title: {}\n
# bullet_str: {}\n
# Legacy Product Description: {}\n
# A+ Description: {}\n
# Image_text: {}\n
# backend_search_terms: {}\n
# -------------------------------------
# Please create question-answers pairs for amazon listing using this data.
# Please segregate them theme wise. themes names should not be features or benefits and create 1 or more questions answer pairs for each theme.
# questions generated should be potential questions in customer mind before buying product.
# please create at least 20 question-answers pairs.
# """.format(title, bullet_str, legacy_desc, a_plus_desc, image_text_string, backend_search_terms)
# prompt = st.text_area("Edit the prompt:", value=default_prompt, height=200)
# # If the user has input a URL, fetch the data from Google Sheets
# if st.button('generate'):
# messages = [
# {"role": "system", "content": "You are helpful assistant"},
# {"role": "user", "content": prompt}
# ]
# model_response = get_chatgpt_response(messages, selected_model)
# question_answers= model_response
# st.session_state.question_answers = question_answers
# st.write(question_answers)
# def parse_qa(text):
# try:
# # Split the text into themes
# themes = re.split(r'\nTheme: ', text)[1:]
# output = []
# for theme in themes:
# theme_lines = theme.split('\n')
# theme_name = theme_lines[0]
# qa_pairs = theme_lines[1:]
# # Extract question and answer pairs
# for qa in qa_pairs:
# if qa.startswith('Q'):
# question = qa.split(': ', 1)[1]
# elif qa.startswith('A'):
# answer = qa.split(': ', 1)[1]
# output.append((theme_name, question, answer))
# return output, True
# except Exception as e:
# return text, False # Return the full text and a flag indicating the parsing failed
# # # Create a button that will trigger writing to Google Sheets
# # if st.button('Write output to sheet'):
# # final_output= st.session_state.question_answers
# # st.write("Button clicked, processing data...")
# # sheet_id = sheet_url.split('/')[5] # Open the Google spreadsheet
# # sheet = gc.open_by_key(sheet_id)
# # try:
# # # Check if the "tone_of_voice_manual" worksheet already exists
# # worksheet_output = None
# # for wks in sheet.worksheets():
# # if wks.title == 'question_answers':
# # worksheet_output = wks
# # break
# # # If the worksheet does not exist, create a new one
# # if worksheet_output is None:
# # worksheet_output = sheet.add_worksheet(title="question_answers", rows="100", cols="20")
# # # Read the existing data from the worksheet
# # existing_data = get_as_dataframe(worksheet_output)
# # # Remove empty columns from the existing data
# # existing_data = existing_data.dropna(how='all', axis=1)
# # # Prepare a list to store the tone of voice manual data
# # question_answers_data = [final_output]
# # # Convert the list of tone of voice manual data into a DataFrame
# # new_data = pd.DataFrame(question_answers_data, columns=['question_answers'])
# # # Append the new data to the existing data
# # updated_data = pd.concat([existing_data, new_data], axis=1)
# # # Clear the worksheet before writing the updated data
# # worksheet_output.clear()
# # # Write the updated data to the "tone_of_voice_manual" worksheet
# # set_with_dataframe(worksheet_output, updated_data)
# # st.write("Data written successfully to Google Sheets.")
# # except Exception as e:
# # st.error(f"An error occurred while writing to Google Sheets: {e}")
# if st.button('Write output to sheet'):
# final_output, parsed_successfully = parse_qa(st.session_state.question_answers)
# st.write("Button clicked, processing data...")
# sheet_id = sheet_url.split('/')[5] # Open the Google spreadsheet
# sheet = gc.open_by_key(sheet_id)
# try:
# worksheet_output = None
# for wks in sheet.worksheets():
# if wks.title == 'question_answers':
# worksheet_output = wks
# break
# if worksheet_output is None:
# worksheet_output = sheet.add_worksheet(title="question_answers", rows="100", cols="20")
# if parsed_successfully:
# new_data = pd.DataFrame(final_output, columns=['Theme', 'Question', 'Answer'])
# else:
# new_data = pd.DataFrame([final_output], columns=['Output'])
# worksheet_output.clear()
# set_with_dataframe(worksheet_output, new_data)
# st.write("Data written successfully to Google Sheets.")
# except Exception as e:
# st.error(f"An error occurred while writing to Google Sheets: {e}")
if page == 'question_answers':
st.title('question answers')
#gc = gspread.service_account(filename='arctic-rite-381810-e8bee8664772.json')
#gc = gspread.service_account(filename='arctic-rite-381810-b124ba8c96a9.json')
gc = gspread.service_account_from_dict(credentials_dict)
sheet_url = st.text_input('Enter the URL of your Google Sheet')
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Select sheet named 'Listing'
worksheet = sheet.worksheet('Q&A')
# Get all records of the data
df = get_as_dataframe(worksheet)
df= df.dropna(subset = ['Question', 'Answer'])
#st.write(df)
question_answer = "\n".join(["Question: {}\nAnswer: {}".format(q, a) for q, a in zip(df['Question'], df['Answer'])])
#st.write(question_answer)
st.write(len(question_answer))
# Display default prompt to user
default_prompt = """Below is question-answer pairs from amazon listing:
------------------------------------
{}
-------------------------------------
please analyze these question-answer pairs and group them theme-wise. you have find themes and then group question-answer pairs as per theme. Don't miss any question pair given above. give numbering to questions.
""".format(question_answer)
prompt = st.text_area("Edit the prompt:", value=default_prompt, height=200)
# If the user has input a URL, fetch the data from Google Sheets
if st.button('generate'):
messages = [
{"role": "system", "content": "You are helpful assistant"},
{"role": "user", "content": prompt}
]
model_response = get_chatgpt_response(messages, selected_model)
question_answers= model_response
st.session_state.question_answers = question_answers
st.write(question_answers)
if st.button('Write output to sheet'):
question_answers = st.session_state.question_answers
# Create a new Google Sheets file
try:
new_worksheet = sheet.worksheet('QnA_analyzed')
except gspread.exceptions.WorksheetNotFound:
# If it doesn't exist, create it
new_worksheet = sheet.add_worksheet(title="QnA_analyzed", rows="100", cols="20")
# Add rows one by one
new_worksheet.append_row(['question_answers', question_answers])
st.write('Done!')
if page == 'feature_mapping':
st.title('feature_mapping')
gc = gspread.service_account_from_dict(credentials_dict)
# Ask user for Google Sheet URL
sheet_url = st.text_input('Enter the URL of your Google Sheet')
# Add this in the part of your Streamlit app where the user can select the model
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Select sheet named 'Listing'
worksheet = sheet.worksheet('Listing')
# Get all records of the data
df = get_as_dataframe(worksheet)
# Convert DataFrame to strings
df_str = df.astype(str)
title = df[df.eq('Title').any(axis=1)].iloc[0, 2]
bullets = [df[df.eq(f"Bullet #{i}").any(axis=1)].iloc[0, 2] for i in range(1, 6)]
backend_search_terms = df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)]) > 0 else None
image_text_row = df[df.eq('Image Text').any(axis=1)]
image_text = list(image_text_row.dropna(axis=1).iloc[0, :])
a_plus_desc_mask = df.astype(str).apply(lambda x: 'A+ Description' in ' '.join(x), axis=1)
if a_plus_desc_mask.any():
a_plus_desc_row = df[a_plus_desc_mask].index[0]
a_plus_desc = df.iloc[a_plus_desc_row:, :].fillna('').values.flatten()
a_plus_desc = ' '.join(a_plus_desc).strip()
else:
a_plus_desc = None
legacy_desc = df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)]) > 0 else None
image_text_string = ' '.join(image_text)
bullet_str = ""
for i, bullet in enumerate(bullets, 1):
bullet_str += f"Bullet #{i}: {bullet}\n"
# Display default prompt to user
default_prompt = """Features:
1) Professional Artist Testing: Developed and tested by professional artists to ensure exceptional product quality and results for all types of artistic expression.
2) 1:1 Aspect Ratio: Square aspect ratio of 1:1 facilitates an easy design process and balanced compositions based on famous artworks.
3) 100% Cotton Fibers: Uses 100% cotton fibers to provide natural and lasting beauty and exceptional resistance to scratching and erasing.
4) Gelatin-sized Paper: Offers astounding absorbency resulting in harmonious, natural grain texture and no optical brightening agents that maintain the original brightness of the artwork.
5) Cold & Hot Presses: Available in both cold press and hot press finishes, resulting in slightly textured, toothed surfaces (cold press) for depth and almost no tooth (hot press) surfaces for seamless blending, overlay, or paint removal.
6) European Mill Crafting: Crafted by European mill masters with over 400 years of paper-making experience, ensuring that you produce your finest works.
7) Easy-Block Format: Offers a unique "Easy-Block" format that eliminates the need to stretch watercolor paper sheets, saves time and effort, and ensures that paint dries to the desired texture and prevent buckling or creasing.
8) 2 Glued, 2 Open Edges: Glued on 2 edges and open on 2 edges for easy removal of finished painting, saving time and effort while maintaining paper integrity and preservation.
9) Travel-friendly: Suitable for travel, providing increased convenience to artists.
10) Various Paper Weights: Available in a range of paper weights, ensuring maximum versatility for different artistic styles and techniques.
11) 100 Series Youth Quality: Offers youth quality in the 100 series, providing a traditional watercolor feel for artistic expression.
12) Cotton & Wood Pulp Choices: Offers two different choices of watercolor paper: 100% cotton pulp and 100% wood pulp.
13) Indoor & Outdoor Use: Designed for use indoors and outdoors, providing versatility for artists on the go.
14) 14 Cold-pressed Sheets: Offers 14 sheets of cold-pressed, textured watercolor paper, providing ample surface area for larger projects.
15) Glue Binding: Offers glue binding for easy tearing out of pages, allowing for experimentation and perfecting techniques.
16) Drawing, Sketching, Painting: Versatile for drawing, sketching, and painting.
17) Mixed Media Suitable: Top choice for mixed media projects.
18) Artist-approved: Tested and approved by artists.
19) Chlorine-free & pH-neutral: Chlorine-free, pH-neutral, and archival, ensuring the longevity of artwork.
20) Natural White Paper: Natural white, providing a textured surface for extraordinary vibrant colors.
21) Rough Watercolor Paper: Rough, providing both smooth and textured surfaces for experimentation.
22) Dual-Sided Surfaces: Dual-sided with smooth and textured surfaces.
23) Expert Quality: Provides expert quality for perfect combination of durability and ease of use.
24) Art-N-Fly Compatibility: Compatible with Art-N-Fly Watercolor Pens.
25) Historic Paper Quality: Offers exceptional papers since the 1700s.
26) Calcium Carbonate Buffer: Buffered with calcium carbonate for added protection.
27) Random Texture: Provides a distinctive random texture.
28) Internally Sized: Internally sized to maintain paper integrity and prevent paper deterioration.
--------------------------------------------------------------------------------------------
You have to search for presence of above features in below information of listing:
--------------------------------------------------------------------------------------------
------------------------------------
Title: {}\n
bullet_str: {}\n
Legacy Product Description: {}\n
A+ Description: {}\n
Image_text: {}\n
backend_search_terms: {}\n
-------------------------------------
Please carefully read the given information of listing and create feature present matrix. if feature is present then you have to mark it using 1 and if absent leave empty. please create in table format. please include feature name in the table. note, only present features should be covered. You have to explain at the end where did you find the present features. also once table is ready create one json that I can easily load in pandas df
""".format(title, bullet_str, legacy_desc, a_plus_desc, image_text_string, backend_search_terms)
prompt = st.text_area("Edit the prompt:", value=default_prompt, height=200)
# If the user has input a URL, fetch the data from Google Sheets
if st.button('generate'):
messages = [
{"role": "system", "content": "You are helpful assistant"},
{"role": "user", "content": prompt}
]
model_response = get_chatgpt_response(messages, selected_model)
feature_mapping= model_response
st.session_state.feature_mapping = feature_mapping
st.write(feature_mapping)
if page == 'benefit_mapping':
st.title('benefit_mapping')
gc = gspread.service_account_from_dict(credentials_dict)
# Ask user for Google Sheet URL
sheet_url = st.text_input('Enter the URL of your Google Sheet')
# Add this in the part of your Streamlit app where the user can select the model
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
# Extract sheet ID from URL
sheet_id = sheet_url.split('/')[5]
# Open the Google spreadsheet
sheet = gc.open_by_key(sheet_id)
# Select sheet named 'Listing'
worksheet = sheet.worksheet('Listing')
# Get all records of the data
df = get_as_dataframe(worksheet)
# Convert DataFrame to strings
df_str = df.astype(str)
title = df[df.eq('Title').any(axis=1)].iloc[0, 2]
bullets = [df[df.eq(f"Bullet #{i}").any(axis=1)].iloc[0, 2] for i in range(1, 6)]
backend_search_terms = df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Backend Search Terms' in ' '.join(x), axis=1)]) > 0 else None
image_text_row = df[df.eq('Image Text').any(axis=1)]
image_text = list(image_text_row.dropna(axis=1).iloc[0, :])
a_plus_desc_mask = df.astype(str).apply(lambda x: 'A+ Description' in ' '.join(x), axis=1)
if a_plus_desc_mask.any():
a_plus_desc_row = df[a_plus_desc_mask].index[0]
a_plus_desc = df.iloc[a_plus_desc_row:, :].fillna('').values.flatten()
a_plus_desc = ' '.join(a_plus_desc).strip()
else:
a_plus_desc = None
legacy_desc = df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)].iloc[0, 2] if len(df[df.astype(str).apply(lambda x: 'Legacy Product Description' in ' '.join(x), axis=1)]) > 0 else None
image_text_string = ' '.join(image_text)
bullet_str = ""
for i, bullet in enumerate(bullets, 1):
bullet_str += f"Bullet #{i}: {bullet}\n"
# Display default prompt to user
default_prompt = """Benefits:
1) Long-lasting Artwork: Exceptional product quality ensures long-lasting, beautiful artwork and exceptional results for various artistic expressions.
2) Easy Composition: A square aspect ratio of 1:1 on the paper facilitates an easy design process and balanced compositions based on famous artworks.
3) Natural Beauty: 100% cotton fibers provide natural and lasting beauty and exceptional resistance to scratching and erasing.
4) Superior Absorbency: Gelatin-sized paper offers astounding absorbency resulting in harmonious, natural grain texture and no optical brightening agents that maintain the original brightness of the artwork.
5) Versatile Finishes: Available in both cold press and hot press finishes result in slightly textured, toothed surfaces (cold press) for depth and almost no tooth (hot press) surfaces for seamless blending, overlay, or paint removal and provide vibrantly versatile paper for customization based on the artist's preference.
6) Expert Craftsmanship: Crafted by experienced mill masters guarantees that artists produce their finest works.
7) No Stretching Needed: Unique "Easy-Block" format eliminates the need to stretch watercolor paper sheets, saves time and effort, and ensures that paint dries to the desired texture and prevents buckling or creasing.
8) Easy Painting Removal: Glued on 2 edges and open on 2 edges for easy removal of finished painting saves time and effort while maintaining paper integrity and preservation.
9) Travel Convenience: Suitable for travel, providing increased convenience to artists.
10) Versatility: Available in a range of paper weights ensures maximum versatility for different artistic styles and techniques.
11) Time & Money Savings: Saves time and money with ready-made sizes.
12) Durable Preservation: Durable material for long-lasting preservation.
13) Traditional Feel: Traditional watercolor feel for artistic expression.
14) Ample Surface Area: Provides ample surface area for larger projects.
15) Superior Value: Superior value compared to other brands.
16) Artistic Versatility: Approved by professional artists for various artistic endeavors.
17) Mixed Media Ideal: Suitable for creating mixed media artwork.
18) Professional Quality: Ensures the longevity of artwork with high-quality material.
19) Artwork Longevity: Provides a textured surface for extraordinary vibrant colors, contributing to artwork longevity.
20) Beautiful Paintings: Ideal for creating beautiful artwork for weddings, gifts, and more.
21) Vibrant Colors: Provides a textured surface that results in extraordinary vibrant colors.
22) Technique Experimentation: Offers both smooth and textured surfaces for experimentation with different techniques.
23) Creative Possibilities: Versatile enough for painting, sketching, printmaking, or drawing.
24) Durable & Easy: Smooth edges and easy tear sheets ensure no damage to artwork.
25) Professional Look: Provides a professional appearance for watercolor paintings.
26) Unique Artisan Touch: Innovative artisan paper adds a unique touch to artwork.
27) Added Protection: High-quality material ensures artwork longevity and protection.
28) Budget-friendly: Cost-effective paper for budget-conscious artists.
29) Quality Assurance: Highest grade of watercolor paper available, providing quality assurance and contributing to artistic confidence.
--------------------------------------------------------------------------------------------
You have to search for presence of above Benefits in below information of listing:
--------------------------------------------------------------------------------------------
------------------------------------
Title: {}\n
bullet_str: {}\n
Legacy Product Description: {}\n
A+ Description: {}\n
Image_text: {}\n
backend_search_terms: {}\n
-------------------------------------
Please carefully read the given information of listing and create Benefits present matrix. if Benefit is present then you have to mark it using 1 and if absent leave empty. please create in table format. note, only present Benefits should be covered. please include benefit name in the table. You have to explain at the end where did you find the present Benefits. also once table is ready create one json that I can easily load in pandas df
""".format(title, bullet_str, legacy_desc, a_plus_desc, image_text_string, backend_search_terms)
prompt = st.text_area("Edit the prompt:", value=default_prompt, height=200)
# If the user has input a URL, fetch the data from Google Sheets
if st.button('generate'):
messages = [
{"role": "system", "content": "You are helpful assistant"},
{"role": "user", "content": prompt}
]
model_response = get_chatgpt_response(messages, selected_model)
benefit_mapping= model_response
st.session_state.feature_mapping = benefit_mapping
st.write(benefit_mapping)
import textwrap
from gspread_dataframe import get_as_dataframe
# def page_combined_features_and_benefits():
# st.title('combined features and benefits')
# gc = gspread.service_account_from_dict(credentials_dict)
# # Use a text area for URLs input
# sheet_urls_input = st.text_area('Enter the URLs of your Google Sheets, each on a new line')
# sheet_urls = sheet_urls_input.split('\n') # split input into a list of URLs
# if sheet_urls:
# st.write('You entered these URLs:')
# for url in sheet_urls:
# st.write(url)
# models = ["gpt-3.5-turbo", "gpt-4", "gpt-3.5-turbo-16k"]
# selected_model = st.selectbox("Choose a model:", models)
# user_char_limit = st.number_input("Enter character limit for chunk:", value=9000, step=500)
# all_feature_benefit_strings = []
# if st.button('generate'):
# # Read all features and benefits from all sheets separately
# for sheet_url in sheet_urls:
# feature_benefit_strings = []
# sheet_id = sheet_url.split('/')[5]
# sheet = gc.open_by_key(sheet_id)
# worksheet_name = 'top_features_benefits'
# worksheet = sheet.worksheet(worksheet_name)
# df = get_as_dataframe(worksheet).dropna(how='all')
# for _, row in df.iterrows():
# feature_benefit_strings.append(f"{row['Type']} {row['Theme']}: {row['Description']}")
# # Process the strings for each sheet separately
# chunk_string = "\n".join(feature_benefit_strings)
# if len(chunk_string) <= user_char_limit:
# messages = [
# {"role": "system", "content": "You are helpful assistant."},
# {"role": "user", "content": f"from below features and benefits, please get top 25 features and benefits. top features or benefits are those which are more prominenent/repeated. please create 2 sections each for features and benefits in your response\n{chunk_string}"}
# ]
# model_response = get_chatgpt_response(messages, selected_model)
# processed_strings = model_response
# all_feature_benefit_strings.append(processed_strings)
# # Check if the length of the final string is less than the user-defined character limit
# final_string = "\n".join(all_feature_benefit_strings)
# #st.write(final_string)
# while len(final_string) > user_char_limit:
# chunks = textwrap.wrap(final_string, user_char_limit)
# all_processed_strings = []
# for chunk in chunks:
# messages = [
# {"role": "system", "content": "You are helpful assistant."},
# {"role": "user", "content": f"from below features and benefits, please get top 25 features and benefits. top features or benefits are those which are more prominenent/repeated. please create 2 sections each for features and benefits in your response\n{chunk}"}
# ]
# model_response = get_chatgpt_response(messages, selected_model)
# processed_strings = model_response
# all_processed_strings.append(processed_strings)
# final_string = "\n".join(all_processed_strings)
# # Run the final prompt
# messages = [
# {"role": "system", "content": "You are helpful assistant."},
# {"role": "user", "content": f"from below features and benefits, please get top 30 features and top 30 benefits. top features or benefits are those which are more prominenent/repeated. please create 2 sections each for features and benefits in your response\n{final_string}"}
# ]
# final_model_response = get_chatgpt_response(messages, selected_model)
# st.write('final response')
# st.write(final_model_response)
# if page == 'combined features and benefits':
# page_combined_features_and_benefits()
# import textwrap
# from gspread_dataframe import get_as_dataframe
def page_combined_features_and_benefits():
st.title('combined features and benefits')
#gc = gspread.service_account(filename='arctic-rite-381810-b124ba8c96a9.json')
gc = gspread.service_account_from_dict(credentials_dict)
#gc = gspread.service_account_from_dict(credentials_dict)
# Use a text area for URLs input
sheet_urls_input = st.text_area('Enter the URLs of your Google Sheets, each on a new line')
sheet_urls = sheet_urls_input.split('\n') # split input into a list of URLs
if sheet_urls:
st.write('You entered these URLs:')
for url in sheet_urls:
st.write(url)
models = ["gpt-3.5-turbo","gpt-4-0125-preview", "gpt-3.5-turbo-0125" ]
selected_model = st.selectbox("Choose a model:", models)
user_char_limit = st.number_input("Enter character limit for chunk:", value=9000, step=500)
# Provide a default message for user to edit for final prompt
default_message = "From below features and benefits, please get top 30 features and top 30 benefits. Top features or benefits are those which are more prominent/repeated. Please create 2 sections each for features and benefits in your response\n{}"
user_message = st.text_area("Edit the final message to be sent:", default_message)
all_feature_benefit_strings = []
if st.button('generate'):
# Read all features and benefits from all sheets separately
for sheet_url in sheet_urls:
feature_benefit_strings = []
sheet_id = sheet_url.split('/')[5]
sheet = gc.open_by_key(sheet_id)
worksheet_name = 'top_features_benefits'
worksheet = sheet.worksheet(worksheet_name)
df = get_as_dataframe(worksheet).dropna(how='all')
for _, row in df.iterrows():
feature_benefit_strings.append(f"{row['Type']} {row['Theme']}: {row['Description']}")
# Process the strings for each sheet separately
chunk_string = "\n".join(feature_benefit_strings)
if len(chunk_string) <= user_char_limit:
messages = [
{"role": "system", "content": "You are helpful assistant."},
{"role": "user", "content": f"from below features and benefits, please get top 25 features and benefits. top features or benefits are those which are more prominenent/repeated. please create 2 sections each for features and benefits in your response\n{chunk_string}"}
]
model_response = get_chatgpt_response(messages, selected_model)
processed_strings = model_response
all_feature_benefit_strings.append(processed_strings)
# Check if the length of the final string is less than the user-defined character limit
final_string = "\n".join(all_feature_benefit_strings)
# Run the final prompt
messages = [
{"role": "system", "content": "You are helpful assistant."},
{"role": "user", "content": user_message.format(final_string)}
]
final_model_response = get_chatgpt_response(messages, selected_model)
st.write('final response')
st.write(final_model_response)
if page == 'combined features and benefits':
page_combined_features_and_benefits() |