Spaces:
Paused
Paused
File size: 1,642 Bytes
683afc3 8d2ed6a 4fbc46c 683afc3 8d2ed6a ca7110d 8d2ed6a 92fa744 8d2ed6a 683afc3 8d2ed6a ca7110d 683afc3 8d2ed6a 683afc3 8d2ed6a 683afc3 8d2ed6a 683afc3 8d2ed6a 683afc3 8d2ed6a 683afc3 8d2ed6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import os
from huggingface_hub import HfApi, login
token = os.getenv("HF_TOKEN")
login(token=token) # Logs in with the token in Hugging Face Spaces
# Load Stable Diffusion model and ControlNet reference-only model
model_id = "stabilityai/stable-diffusion-3.5-large-turbo"
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" # Use an appropriate ControlNet variant
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float32)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
torch_dtype=torch.float32
)
# Define the Gradio interface function
def generate_image(prompt, reference_image):
# Process reference image
reference_image = reference_image.resize((512, 512))
# Generate image with reference-only style transfer
generated_image = pipeline(
prompt=prompt,
image=reference_image,
controlnet_conditioning_scale=1.0,
guidance_scale=7.5,
num_inference_steps=50
).images[0]
return generated_image
# Set up Gradio interface
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Image(type="pil", label="Reference Image (Style)")
],
outputs="image",
title="Image Generation with Reference-Only Style Transfer",
description="Generate an image based on a text prompt and style reference image using Stable Diffusion 3.5 with ControlNet (reference-only mode)."
)
# Launch the Gradio interface
interface.launch()
|