File size: 8,744 Bytes
a2919a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Union

import cv2
import numpy as np
import PIL.Image
import torch
from PIL import Image


class ImageMixin:
    """
    A mixin class for converting images between different formats: PIL, NumPy, and PyTorch tensors.

    This class provides methods to:
    - Convert a PIL image or a NumPy array to a PyTorch tensor.
    - Post-process a PyTorch tensor image and convert it to the specified return type.
    - Convert a PIL image or a list of PIL images to NumPy arrays.
    - Convert a NumPy image to a PyTorch tensor.
    - Convert a PyTorch tensor to a NumPy image.
    - Convert a NumPy image or a batch of images to a PIL image.
    """

    def convert_image_to_tensor(
        self, image: Union[PIL.Image.Image, np.ndarray, List[PIL.Image.Image]], normalize: bool = True
    ) -> torch.Tensor:
        """
        Convert a PIL image or a NumPy array to a PyTorch tensor.

        Args:
            image (Union[PIL.Image.Image, np.ndarray]): The input image, either as a PIL image, a NumPy array or a list of
                PIL images.

        Returns:
            torch.Tensor: The converted image as a PyTorch tensor.
        """
        if isinstance(image, (PIL.Image.Image, list)):
            # We expect that if it is a list, it only should contain pillow images
            if isinstance(image, list):
                for single_image in image:
                    if not isinstance(single_image, PIL.Image.Image):
                        raise ValueError("All images in the list must be Pillow images.")

            image = self.pil_to_numpy(image, normalize)

        return self.numpy_to_pt(image)

    def post_process_image(self, image: torch.Tensor, return_type: str):
        """
        Post-process a PyTorch tensor image and convert it to the specified return type.

        Args:
            image (torch.Tensor): The input image as a PyTorch tensor.
            return_type (str): The desired return type, either "pt" for PyTorch tensor, "np" for NumPy array, or "pil" for PIL image.

        Returns:
            Union[torch.Tensor, np.ndarray, List[PIL.Image.Image]]: The post-processed image in the specified return type.
        """
        if return_type == "pt":
            return image

        image = self.pt_to_numpy(image)
        if return_type == "np":
            return image

        image = self.numpy_to_pil(image)
        return image

    @staticmethod
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image], normalize: bool = True) -> np.ndarray:
        """
        Convert a PIL image or a list of PIL images to NumPy arrays.

        Args:
            images (Union[List[PIL.Image.Image], PIL.Image.Image]): The input image(s) as PIL image(s).

        Returns:
            np.ndarray: The converted image(s) as a NumPy array.
        """
        if not isinstance(images, list):
            images = [images]

        if normalize:
            images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        else:
            images = [np.array(image).astype(np.float32) for image in images]

        images = np.stack(images, axis=0)

        return images

    @staticmethod
    def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
        """
        Convert a NumPy image to a PyTorch tensor.

        Args:
            images (np.ndarray): The input image(s) as a NumPy array.

        Returns:
            torch.Tensor: The converted image(s) as a PyTorch tensor.
        """
        if images.ndim == 3:
            images = images[..., None]
        images = torch.from_numpy(images.transpose(0, 3, 1, 2)).float()

        return images

    @staticmethod
    def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
        """
        Convert a PyTorch tensor to a NumPy image.

        Args:
            images (torch.Tensor): The input image(s) as a PyTorch tensor.

        Returns:
            np.ndarray: The converted image(s) as a NumPy array.
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
        """
        Convert a NumPy image or a batch of images to a PIL image.

        Args:
            images (np.ndarray): The input image(s) as a NumPy array.

        Returns:
            List[PIL.Image.Image]: The converted image(s) as PIL images.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
    def scale_image(image: torch.Tensor, scale: float, mutiple_factor: int = 8) -> torch.Tensor:
        """
        Scales an image while maintaining aspect ratio and ensuring dimensions are multiples of `multiple_factor`.

        Args:
            image (`torch.Tensor`): The input image tensor of shape (batch, channels, height, width).
            scale (`float`): The scaling factor applied to the image dimensions.
            multiple_factor (`int`, *optional*, defaults to 8): The factor by which the new dimensions should be divisible.

        Returns:
            `torch.Tensor`: The scaled image tensor.
        """

        if scale == 1.0:
            return image, scale

        _batch, _channels, height, width = image.shape

        # Calculate new dimensions while maintaining aspect ratio
        new_height = int(height * scale)
        new_width = int(width * scale)

        # Ensure new dimensions are multiples of mutiple_factor
        new_height = (new_height // mutiple_factor) * mutiple_factor
        new_width = (new_width // mutiple_factor) * mutiple_factor

        # if the final height and widht changed because of the multiple_factor, we need to set the scale too
        scale = new_height / height

        # Resize the image using the calculated dimensions
        resized_image = torch.nn.functional.interpolate(
            image, size=(new_height, new_width), mode="bilinear", align_corners=False
        )

        return resized_image, scale

    @staticmethod
    def resize_numpy_image(image: np.ndarray, scale: float, multiple_factor: int = 8) -> np.ndarray:
        """
        Resizes a NumPy image while maintaining aspect ratio and ensuring dimensions are multiples of `multiple_factor`.

        Args:
            image (`np.ndarray`): The input image array of shape (height, width, channels) or (height, width) for grayscale.
            scale (`float`): The scaling factor applied to the image dimensions.
            multiple_factor (`int`, *optional*, defaults to 8): The factor by which the new dimensions should be divisible.

        Returns:
            `np.ndarray`: The resized image array.
        """
        if len(image.shape) == 3:  # Single image without batch dimension
            image = np.expand_dims(image, axis=0)

        batch_size, height, width, channels = image.shape

        # Calculate new dimensions while maintaining aspect ratio
        new_height = int(height * scale)
        new_width = int(width * scale)

        # Ensure new dimensions are multiples of multiple_factor
        new_height = (new_height // multiple_factor) * multiple_factor
        new_width = (new_width // multiple_factor) * multiple_factor

        # if the final height and widht changed because of the multiple_factor, we need to set the scale too
        scale = new_height / height

        # Resize each image in the batch
        resized_images = []
        for i in range(batch_size):
            resized_image = cv2.resize(image[i], (new_width, new_height), interpolation=cv2.INTER_LINEAR)
            resized_images.append(resized_image)

        # Stack resized images back into a single array
        resized_images = np.stack(resized_images, axis=0)

        return resized_images, scale